Citation: ZHENG Dong, XIONG Pengfei, ZHONG Beijing. Chemical Kinetic Model for the Combustion of the Green Propellant of the Nitrous Oxide Fuel Blend[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1241-1247. doi: 10.3866/PKU.WHXB201812031 shu

Chemical Kinetic Model for the Combustion of the Green Propellant of the Nitrous Oxide Fuel Blend

  • Corresponding author: ZHENG Dong, zhengd11@yeah.net
  • Received Date: 18 December 2018
    Revised Date: 1 January 2019
    Accepted Date: 1 January 2019
    Available Online: 21 November 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51606212) and Fundamental Research Funds for the Central Universities, China (2682017CX035)Fundamental Research Funds for the Central Universities, China 2682017CX035the National Natural Science Foundation of China 51606212

  • In order to meet high-performance propulsion system requirements for aerospace technology and severe future restrictions on hydrazine use, research on non-toxic, high-performance, and low-cost propulsion technology is urgently needed. The N2O-C2 hydrocarbon monopropellant NOFBX (Nitrous Oxide Fuel Blend) provides significant benefits for meeting these criteria and has become a focus of increased research in recent years. In this study, a chemical kinetic model for NOFBX combustion that integrates the reduced C2 sub-mechanism, the N2O sub-mechanism in the literature, and the N2O/CH species reaction mechanism has been developed. The present mechanism consists of 52 species and 325 elementary reactions. For better predictions of ignition and combustion characteristics, the kinetic parameters of the sensitive reactions with comparatively high rate constant uncertainties have been revised. The present model has been validated against published experimental data, including flow reactor results on N2O/H2O/N2 mixture decomposition, shock tube ignition delay times on N2O/C2 hydrocarbons diluted with N2 or Ar mixtures, heat flux of flat flame laminar flame speeds on N2O/C2H2 diluted with N2 mixtures, and Bunsen flame laminar flame speeds on N2O/C2H4 diluted with N2 mixtures. Additionally, this study compares the new model to other published small hydrocarbon fuel kinetic models with a NOx sub-mechanism. The experimental validations show that the present model accurately captures the nitrous oxide decomposition process and precisely predicts N2O, O2, NO, and NO2 vital species concentration distributions. For all N2O-C2 hydrocarbon fuel systems (ethane-, ethylene-, and acetylene-nitrous oxide), the ignition delay times predicted by the present model are in good agreement with the experimental data. Furthermore, at a wider range of initial temperatures (1100-1700 K), initial pressures (0.1-1.6 MPa), and equivalence ratios (0.5-2.0) for the ignition delay times of ethylene-nitrous oxide, the present model exhibits improved predictions of experimental data. For the laminar flame speeds of N2O-C2H2 and N2O-C2H4 mixtures, the present model generally exhibits satisfactory predictions of the experimental data over the whole range of equivalence ratios (0.6-2.0). However, at initial pressure 0.1 MPa and equivalence ratios of 1.0-1.6 for N2O-C2H4 laminar flame speeds, the present model slightly underestimates experimental data. Considering the much higher uncertainty of the measured laminar flame speeds by the Bunsen flame method, this discrepancy is acceptable. Due to the small scale, full experimental validations and good applicability, the present model can be used to further research on multi-dimensional combustion simulation in NOFBX engine combustors.
  • 加载中
    1. [1]

      Gohardani, A. S.; Stanojev, J.; Demairé, A.; Anflo, K.; Persson, M.; Wingborg, N.; Nilsson, C. Prog. Aerosp. Sci. 2014, 71 (Supplement C), 128. doi: 10.1016/j.paerosci.2014.08.001  doi: 10.1016/j.paerosci.2014.08.001

    2. [2]

      Zhu, C. C.; Han, W.; Yu, X. L.; Shan S. Q.; Shi, X. M. J. Rocket Propul. 2016, 42 (2), 79.  doi: 10.3969/j.issn.1672-9374.2016.02.015

    3. [3]

      He, F.; Fang, T.; Li, Y. Y.; Mi, Z. T. Chin. J. Expl. Prop. 2006, 29 (4), 54.  doi: 10.3969/j.issn.1007-7812.2006.04.015

    4. [4]

      Ba, Y. T.; Hou, L. Y.; Mao, X. F.; Wang, F. S. Acta Phys. -Chim. Sin. 2014, 30, 1042.  doi: 10.3866/PKU.WHXB201404093

    5. [5]

      Tian, J. J.; Zhang, Q. H. Chin. J. Energ. Mater. 2014, 5, 580.  doi: 10.3969/j.issn.1006-9941.2014.05.001

    6. [6]

      Liu, X. W. J. Rocket Propul. 2001, 1, 56.  doi: 10.3969/j.issn.1672-9374.2001.01.011

    7. [7]

      Song, C. Q.; Xu, W. W.; Zhang, J. Q.; Chen, J. J. Rocket Propul. 2014, 40 (2), 7.  doi: 10.3969/j.issn.1672-9374.2014.02.002

    8. [8]

      Taylor, R. Safety and Performance Advantages of Nitrous Oxide Fuel Blends (NOFBX) Propellants for Manned and Unmanned Spaceflight Applications, Proc. the IAASS Conference A Safer Space for a Safer World, Versaille, France, 2011, (ESA SP-699, January 2012).

    9. [9]

      Parker, W. G.; Wolfhard, H. G. Symp. (Int.) Combust. 1953, 4, 420. doi: 10.1016/S0082-0784(53)80058-5

    10. [10]

      Aldous, K. M.; Bailey, B. W.; Rankin, J. M. Anal. Chem. 1972, 44, 191. doi: 10.1021/ac60309a036  doi: 10.1021/ac60309a036

    11. [11]

      Powell, O. A.; Papas, P.; Dreyer, C. Combust. Sci. Technol. 2009, 181, 917. doi: 10.1080/00102200902817066  doi: 10.1080/00102200902817066

    12. [12]

      Naumann, C.; Kick, T.; Methling, T. Green Propellant Substituting Hydrazine: Investigation of Ignition Delay Time and Laminar Flame Speed of Ethene/Dinitrogen Oxide Mixtures. European Combustion Meeting 26th. Boston, MA, USA, 2017.

    13. [13]

      Mével, R.; Shepherd, J. E. Shock Waves. 2015, 25, 217. doi: 10.1007/s00193-014-0509-4  doi: 10.1007/s00193-014-0509-4

    14. [14]

      Deng, F.; Pan, Y.; Sun, W.; Yang, F.; Zhang, Y.; Huang, Z. Energy & Fuels 2017, 31, 14116. doi: 10.1021/acs.energyfuels.7b01425  doi: 10.1021/acs.energyfuels.7b01425

    15. [15]

      Konnov, A. A. Detailed Reaction Mechanism for Small Hydrocarbons Combustion. Release 0.5 (2000) http://homepages.vub.ac.be/~akonnov/ (accessed Feb 11, 2009).

    16. [16]

      Dagaut, P.; Nicolle, A. Combust. Flame 2005, 140, 161. doi: 10.1016/j.combustflame.2004.11.003  doi: 10.1016/j.combustflame.2004.11.003

    17. [17]

      Smith, G. P.; Golden, D. M.; Frenklach, M.; Moriarty, N. W.; Eiteneer, B.; Goldenberg, M.; Bowman, C. T.; Hanson, R. K. GRI-mech release 3.0. http://www.me.berkeley.edu/gri/ (accessed Jun 4, 2018).

    18. [18]

      Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45, 638. doi: 10.1002/kin.20802  doi: 10.1002/kin.20802

    19. [19]

      Powell, O. A.; Papas, P.; Dreyer, C. B. Combust. Sci. Technol. 2010, 182, 252. doi: 10.1080/00102200903357724  doi: 10.1080/00102200903357724

    20. [20]

      Wang, H.; You, X.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F.; Law, C. K. USC Mech Version Ⅱ. http://ignis.usc.edu/USC_Mech_Ⅱ.htm, May 2007 (accessed Jun 4, 2018).

    21. [21]

      Wang, Q. D. Energy & Fuels 2013, 27, 4021. doi: 10.1021/ef4007774  doi: 10.1021/ef4007774

    22. [22]

      Marshall, P.; Ko, T.; Fontijn, A. J. Phys. Chem. 1989, 93, 1922. doi: 10.1021/j100342a045  doi: 10.1021/j100342a045

    23. [23]

      Konnov, A. A. Combust. Flame 2009, 156, 2093. doi: 10.1016/j.combustflame.2009.03.016  doi: 10.1016/j.combustflame.2009.03.016

    24. [24]

      Allen, M. T.; Yetter, R. A.; Dryer, F. L. Int. J. Chem. Kinet. 1995, 27, 883. doi: 10.1002/kin.550270906  doi: 10.1002/kin.550270906

    25. [25]

      Meagher, N. E.; Anderson, W. R. J. Phys. Chem. A 2000, 104, 6013. doi: 10.1021/jp994471n  doi: 10.1021/jp994471n

    26. [26]

      Mével, R.; Javoy, S.; Lafosse, F.; Chaumeix, N.; Dupré, G.; Paillard, C. E. P. Combust. Inst. 2009, 32, 359. doi: 10.1016/j.ijhydene.2009.08.054  doi: 10.1016/j.ijhydene.2009.08.054

    27. [27]

      Zhang, Y.; Mathieu, O.; Petersen, E. L.; Bourque, G.; Curran, H. J. Combust. Flame 2017, 182, 122. doi: 10.1016/j.combustflame.2017.03.019  doi: 10.1016/j.combustflame.2017.03.019

    28. [28]

      Giménez-López, J.; Alzueta, M. U.; Rasmussen, C. T.; Marshall, P.; Glarborg, P. P. Combust. Inst. 2011, 33, 449. doi: 10.1016/j.proci.2010.05.098  doi: 10.1016/j.proci.2010.05.098

    29. [29]

      Zheng, D.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28, 2029.  doi: 10.3866/PKU.WHXB201207042

    30. [30]

      Kee, R. J.; Rupley, F. M.; Miller, J. A. CHEMKIN Release 4.1, Reaction Design: San Diego, CA, USA. 2006.

  • 加载中
    1. [1]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Changwei Dun Xijun Zhang Qianyi Zhao Yuming Guo . Promoting the Construction of the Chemical Experiment Teaching Center and Forging a New Era in Cultivating Innovative Talents. University Chemistry, 2024, 39(7): 211-217. doi: 10.12461/PKU.DXHX202405139

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

Metrics
  • PDF Downloads(16)
  • Abstract views(597)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return