Citation: CHEN Shuai, GAO Junfeng, SRINIVASAN Bharathi M., ZHANG Yong-Wei. A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1119-1127. doi: 10.3866/PKU.WHXB201812023 shu

A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition

  • Corresponding author: ZHANG Yong-Wei, zhangyw@ihpc.a-star.edu.sg
  • Received Date: 12 November 2018
    Revised Date: 15 January 2019
    Accepted Date: 15 January 2019
    Available Online: 17 October 2019

    Fund Project: The project was supported by the Science and Engineering Research Council through Grant (152-70-00017) and Use of Computing Resources at the A*STAR Computational Resource Centre and National Supercomputer Centre, Singaporethe Science and Engineering Research Council through Grant 152-70-00017

  • Controllable synthesis of MoS2 with desired number of layers via chemical vapor deposition (CVD) remains challenging. Hence, it is highly desirable to develop a theoretical model that can be used to predict the single- and multilayer growth of MoS2 quantitatively, and provide guidelines for experimental fabrication. Herein we have established a kinetic Monte Carlo (kMC) model to predict the CVD growth of mono- and bilayer MoS2. First, we proposed that the growth rates of layer 1 and layer 2 were governed by the distribution of the adatom concentration, and the growth kinetics of compact triangular MoS2 followed the kink nucleation-propagation mechanism. The adatom concentration was formulated in terms of adatom flux, effective lifetime of adatoms, growth temperature, binding energies, edge energies, and nucleation criterion. The kink nucleation and propagation were determined by energy barriers of the adatom attachments to the zigzag and armchair edges. We then employed an analytic thermodynamic criterion to extract these parameters. Using the calibrated model, we found that the growth rate of layer 2 strongly depended on the size of layer 1 and decreased monotonically with increasing size of layer 1, and might even become prohibited at the maximum size of layer 1. Furthermore, we analyzed the size and morphology evolutions of bilayer MoS2 at different growth temperatures and adatom fluxes. Throughout the growth processes of bilayer MoS2, the morphologies of layers 1 and 2 maintained triangular shapes with compact edges, consistent with the kink nucleation-propagation growth mechanism. Our simulations revealed that the growth of bilayer MoS2 was promoted by increasing the growth temperature or decreasing the adatom flux, which corroborated the experimental observations. The increase in growth temperature led to reduced adatom concentration at the edge of layer 2 in accordance with the adatom concentration far from the edge of layer 2, resulting in a consistent difference in the adatom concentration to promote the growth of bilayer MoS2. Similarly, the decrease in adatom flux lowered the difference between the adatom concentrations far from the edge and at the edge of layer 1, decelerating the growth of layer 1. The decelerated growth of layer 1 reduced the difference between the adatom concentrations far from the edge and at the edge of layer 2 to zero, permitting the growth of bilayer MoS2. To guide the experimental synthesis, we constructed a phase diagram to delineate the permitted or prohibited growth of bilayer MoS2 at different growth temperatures and adatom fluxes. Hence, this work not only unveils the conditions for the growth of mono- and bi-layer MoS2, but also provides guidelines for controllable synthesis of MoS2 with the desired number of layers.
  • 加载中
    1. [1]

      Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H. C.; Huang, Y.; Duan, X. Nat. Rev. Mater. 2016, 1, 16042. doi: 10.1038/natrevmats.2016.42  doi: 10.1038/natrevmats.2016.42

    2. [2]

      Lin, L.; Liu, Z. Nat. Mater. 2016, 15, 9. doi: 10.1038/nmat4498  doi: 10.1038/nmat4498

    3. [3]

      Zhu, S.; Geng, X.; Han, Y.; Benamara, M.; Chen, L.; Li, J.; Bilgin, I.; Zhu, H. NPJ Comput. Mater. 2017, 3, 41. doi: 10.1038/s41524-017-0041-z  doi: 10.1038/s41524-017-0041-z

    4. [4]

      Xie, G.; Ju, Z.; Zhou, K.; Wei, X.; Guo, Z.; Cai, Y.; Zhang, G. NPJ Comput. Mater. 2018, 4, 21. doi: 10.1038/s41524-018-0076-9  doi: 10.1038/s41524-018-0076-9

    5. [5]

      Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 2011, 11, 3768. doi: 10.1021/nl2018178  doi: 10.1021/nl2018178

    6. [6]

      Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; et al. Nat. Commun. 2013, 4, 2642. doi: 10.1038/ncomms3642  doi: 10.1038/ncomms3642

    7. [7]

      Yu, Z.; Pan, Y.; Shen, Y.; Wang, Z.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L.; Wang, B.; Sun, L.; et al. Nat. Commun. 2014, 5, 5290. doi: 10.1038/ncomms6290  doi: 10.1038/ncomms6290

    8. [8]

      Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805. doi: 10.1103/PhysRevLett.105.136805  doi: 10.1103/PhysRevLett.105.136805

    9. [9]

      Chu, T.; Ilatikhameneh, H.; Klimeck, G.; Rahman, R.; Chen, Z. Nano Lett. 2015, 15, 8000. doi: 10.1021/acs.nanolett.5b03218  doi: 10.1021/acs.nanolett.5b03218

    10. [10]

      Tang, D. M.; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J.; et al. Nat. Commun. 2014, 5, 3631. doi: 10.1038/ncomms4631  doi: 10.1038/ncomms4631

    11. [11]

      Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D'Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M.; et al. 2D Mater. 2017, 4, 045013. doi: 10.1088/2053-1583/aa8764  doi: 10.1088/2053-1583/aa8764

    12. [12]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Science 2011, 331, 568. doi: 10.1126/science.1194975  doi: 10.1126/science.1194975

    13. [13]

      Liu, Y.; He, X.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. ACS Nano 2016, 10, 8821. doi: 10.1021/acsnano.6b04577  doi: 10.1021/acsnano.6b04577

    14. [14]

      Mohiuddin, M.; Wang, Y.; Zavabeti, A.; Syed, N.; Datta, R. S.; Ahmed, H.; Daeneke, T.; Russo, S. P.; Rezk, A. R.; Yeo, L. Y.; et al. Chem. Mater. 2018, 30, 5593. doi: 10.1021/acs.chemmater.8b01506  doi: 10.1021/acs.chemmater.8b01506

    15. [15]

      Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Nat. Mater. 2013, 12, 754. doi: 10.1038/NMAT3673  doi: 10.1038/NMAT3673

    16. [16]

      Lee, Y. H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S.; et al. Nano Lett. 2013, 13, 1852. doi: 10.1021/nl400687n  doi: 10.1021/nl400687n

    17. [17]

      Shi, J.; Ma, D.; Han, G. F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y.; et al. ACS Nano 2014, 8, 10196. doi: 10.1021/nn503211t  doi: 10.1021/nn503211t

    18. [18]

      Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Chem. Mater. 2014, 26, 6371. doi: 10.1021/cm5025662  doi: 10.1021/cm5025662

    19. [19]

      Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z.; Li, X.; Yu, H.; Zhu, X.; Yang, R.; Shi, D.; et al. J. Am. Chem. Soc. 2015, 137, 15632. doi: 10.1021/jacs.5b10519  doi: 10.1021/jacs.5b10519

    20. [20]

      Yu, H.; Liao, M.; Zhao, W.; Liu, G.; Zhou, X. J.; Wei, Z.; Xu, X.; Liu, K.; Hu, Z.; Deng, K.; et al. ACS Nano 2017, 11, 12001. doi: 10.1021/acsnano.7b03819  doi: 10.1021/acsnano.7b03819

    21. [21]

      Chen, S.; Gao, J.; Bharathi, M. S.; Zhang, G.; Sorkin, V.; Ramanarayan, H.; Zhang, Y. W. 2D Mater. 2019, 6, 015031. doi: 10.1088/2053-1583/aaf59c  doi: 10.1088/2053-1583/aaf59c

    22. [22]

      Gao, J.; Xu, Z.; Chen, S.; Bharathi, M. S.; Zhang, Y. W. Adv. Theory Simul. 2018, 1, 1800085. doi: 10.1002/adts.201800085  doi: 10.1002/adts.201800085

    23. [23]

      Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2011, 133, 5009. doi: 10.1021/ja110927p  doi: 10.1021/ja110927p

    24. [24]

      Yuan, Q.; Gao, J.; Shu, H.; Zhao, J.; Chen, X.; Ding, F. J. Am. Chem. Soc. 2012, 134, 2970. doi: 10.1021/ja2050875  doi: 10.1021/ja2050875

    25. [25]

      Niu, T.; Zhou, M.; Zhang, J.; Feng, Y.; Chen, W. J. Am. Chem. Soc. 2013, 135, 8409. doi: 10.1021/ja403583s  doi: 10.1021/ja403583s

    26. [26]

      Wu, P.; Zhang, Y.; Cui, P.; Li, Z.; Yang, J.; Zhang, Z. Phys. Rev. Lett. 2015, 114, 216102. doi: 10.1103/PhysRevLett.114.216102  doi: 10.1103/PhysRevLett.114.216102

    27. [27]

      Gao, J.; Zhao, J.; Ding, F. J. Am. Chem. Soc. 2012, 134, 6204. doi: 10.1021/ja2104119  doi: 10.1021/ja2104119

    28. [28]

      Artyukhov, V. I.; Liu, Y.; Yakobson, B. I. Proc. Natl. Acad. Sci. USA 2012, 109, 15136. doi: 10.1073/pnas.1207519109  doi: 10.1073/pnas.1207519109

    29. [29]

      Wu, P.; Jiang, H.; Zhang, W.; Li, Z.; Hou, Z.; Yang, J. J. Am. Chem. Soc. 2012, 134, 6045. doi: 10.1021/ja301791x  doi: 10.1021/ja301791x

    30. [30]

      Zhang, X.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2014, 136, 3040. doi: 10.1021/ja405499x  doi: 10.1021/ja405499x

    31. [31]

      Lee, G. D.; Wang, C. Z.; Yoon, E.; Hwang, N. M.; Kim, D. Y.; Ho, K. M. Phys. Rev. Lett. 2005, 95, 205501. doi: 10.1103/PhysRevLett.95.205501  doi: 10.1103/PhysRevLett.95.205501

    32. [32]

      Wang, L.; Zhang, X.; Chan, H. L.; Yan, F.; Ding, F. J. Am. Chem. Soc. 2013, 135, 4476. doi: 10.1021/ja312687a  doi: 10.1021/ja312687a

    33. [33]

      Ma, T.; Ren, W.; Zhang, X.; Liu, Z.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Proc. Natl. Acad. Sci. USA 2013, 110, 20386. doi: 10.1073/pnas.1312802110  doi: 10.1073/pnas.1312802110

    34. [34]

      Bharathi, M. S.; Hao, Y.; Ramanarayan, H.; Rywkin, S.; Hone, J. C.; Colombo, L.; Ruoff, R. S.; Zhang, Y. W. ACS Nano 2018, 12, 9372. doi: 10.1021/acsnano.8b04460  doi: 10.1021/acsnano.8b04460

    35. [35]

      Artyukhov, V. I.; Hu, Z.; Zhang, Z.; Yakobson, B. I. Nano Lett. 2016, 16, 3696. doi: 10.1021/acs.nanolett.6b00986  doi: 10.1021/acs.nanolett.6b00986

    36. [36]

      Hong, S.; Krishnamoorthy, A.; Rajak, P.; Tiwari, S.; Misawa, M.; Shimojo, F.; Kalia, R. K.; Nakano, A.; Vashishta, P. Nano Lett. 2017, 17, 4866. doi: 10.1021/acs.nanolett.7b01727  doi: 10.1021/acs.nanolett.7b01727

    37. [37]

      Ye, H.; Zhou, J.; Er, D.; Price, C. C.; Yu, Z.; Liu, Y.; Lowengrub, J.; Lou, J.; Liu, Z.; Shenoy, V. B. ACS Nano 2017, 11, 12780. doi: 10.1021/acsnano.7b07604  doi: 10.1021/acsnano.7b07604

    38. [38]

      Nie, Y.; Liang, C.; Zhang, K.; Zhao, R.; Eichfeld, S. M.; Cha, P. R.; Colombo, L.; Robinson, J. A.; Wallace, R. M.; Cho, K. 2D Mater. 2016, 3, 025029. doi: 10.1088/2053-1583/3/2/025029  doi: 10.1088/2053-1583/3/2/025029

    39. [39]

      Rajan, A. G.; Warner, J. H.; Blankschtein, D.; Strano, M. S. ACS Nano 2016, 10, 4330. doi: 10.1021/acsnano.5b07916  doi: 10.1021/acsnano.5b07916

    40. [40]

      Yue, R.; Nie, Y.; Walsh, L. A.; Addou, R.; Liang, C.; Lu, N.; Barton, A. T.; Zhu, H.; Che, Z.; Barrera, D.; et al. 2D Mater. 2017, 4, 045019. doi: 10.1088/2053-1583/aa8ab5  doi: 10.1088/2053-1583/aa8ab5

    41. [41]

      Chang, C. H.; Fan, X.; Lin, S. H.; Kuo, J. L. Phys. Rev. B, 2013, 88, 195420. doi: 10.1103/PhysRevB.88.195420  doi: 10.1103/PhysRevB.88.195420

    42. [42]

      Shu, H.; Chen, X.; Tao, X.; Ding, F. ACS Nano 2012, 6, 3243. doi: 10.1021/nn300726r  doi: 10.1021/nn300726r

    43. [43]

      Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z.; Yang, Z.; Chen, M. L.; Liu, Z.; Ma, T.; Sun, D. M.; Ni, Z.; et al. Adv. Mater. 2017, 29, 1700990. doi: 10.1002/adma.201700990  doi: 10.1002/adma.201700990

    44. [44]

      Xue, X. X.; Feng, Y.; Chen, K.; Zhang, L. J. Chem. Phys. 2018, 148, 134704. doi: 10.1063/1.5010996  doi: 10.1063/1.5010996

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    4. [4]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    5. [5]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    6. [6]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    7. [7]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    8. [8]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    9. [9]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    10. [10]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    11. [11]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    12. [12]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    14. [14]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    15. [15]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    16. [16]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    19. [19]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(16)
  • Abstract views(588)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return