Citation: ZHAO Mengdi, LU Wenjun. Alkanes Functionalization via C-H Activation[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 977-988. doi: 10.3866/PKU.WHXB201811045 shu

Alkanes Functionalization via C-H Activation

  • Corresponding author: LU Wenjun, luwj@sjtu.edu.cn
  • Received Date: 30 November 2018
    Revised Date: 11 January 2019
    Accepted Date: 15 January 2019
    Available Online: 18 September 2019

    Fund Project: The project supported by the National Natural Science Foundation of China (21372153)the National Natural Science Foundation of China 21372153

  • Normal alkyl sp3C―H bonds are ubiquitous in compounds such as methane, linear alkanes, and cycloalkanes that are not linked directly to heteroatoms or other functional groups. These unactivated bonds are not broken readily under mild conditions because their bond dissociation energy values are high and acidity values are low. Moreover, in the radical processes at high temperatures, reaction selectivity is not good for an alkane substrate with various alkyl sp3C―H bonds, which is commonly methyl < 1° < 2° < 3°. In the past five decades, C―H activation by transition-metal species to give C-metal bonds under mild conditions was intensively studied; all efforts were undertaken to provide new methods that can be applied in both chemical synthesis and chemical industry. However, the effective transformations of inert C―H bonds, particularly alkyl sp3C―H bonds, without the assistance of directing groups have been rarely investigated. This review focuses on the functionalization of normal alkyl sp3C―H bonds, such as methyl and primary sp3C―H bonds, via electrophilic activation or oxidative addition by using homogenous transition-metal catalysts, which are two main strategies in the study of inert C―H activation. The selectivity on C―H bond is methyl > 1° > 2° > 3° in both the reactions. Neither heterogeneous catalysis nor biocatalysis is mentioned in this review. Some remarkable progress is described on the study of reaction mechanisms and the establishment of novel reactions. For example, several selective oxidations of methane or linear alkanes have been introduced to afford new C―O, C―Cl, or even C―C bonds in the presence of Pt or Pd catalysts. The Shilov chemistry, which combines electrophilic activation of the C―H bond by the transition-metal complex, oxidation of the transition-metal intermediate, and nucleophilic substitution of organometallic species, has been emphasized in these reactions. Other transition-metal catalysts including Rh, Ir, Re, and W have been employed successfully in the carbonylation, borylation, and dehydrogenation of alkanes at moderate temperatures. The reaction pathways normally involve oxidative addition of the C―H bond with the transition-metal complex followed by insertion-elimination, reductive elimination, or β-H elimination. In the cascade reactions consisting of dehydrogenation of alkanes and addition of alkenes, new C―C or C―Si bonds can also be formed at terminal sites of linear alkanes. However, most of the above-mentioned reactions are still under investigation because of limited scope of the substrate, excess loading of the alkane, low efficiency of the catalyst, and high cost of the reaction operation. Breakthroughs in this promising field of alkane functionalization are possible when new concepts and technology are realized and applied.
  • 加载中
    1. [1]

      Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154. doi: 10.1021/ar00051a009  doi: 10.1021/ar00051a009

    2. [2]

      Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. doi: 10.1021/cr9411886  doi: 10.1021/cr9411886

    3. [3]

      Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. doi: 10.1021/ar000209h  doi: 10.1021/ar000209h

    4. [4]

      Crabtree, R. H. J. Chem. Soc., Dalton Trans. 2001, 2437. doi: 10.1039/b103147n  doi: 10.1039/b103147n

    5. [5]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a  doi: 10.1038/417507a

    6. [6]

      Lu, W.; Zhou, L. Oxidation of C‒H Bonds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017.

    7. [7]

      Luo, Y. -R. Comprehensive Handbook of Chemical Bond Energies; CRC Press.: Boca Raton, FL, USA, 2007.

    8. [8]

      Egloff, G.; Schaad, R. E.; Lowry, C. D., Jr. Chem. Rev. 1931, 8, 1. doi: 10.1021/cr60029a001  doi: 10.1021/cr60029a001

    9. [9]

      Lin, R.; Amrute, A. P.; Pérez-Ramírez, J. Chem. Rev. 2017, 117, 4182. doi: 10.1021/acs.chemrev.6b00551  doi: 10.1021/acs.chemrev.6b00551

    10. [10]

      Zhao, M.; Lu, W. Org. Lett. 2017, 19, 4560. doi: 10.1021/acs.orglett.7b02153  doi: 10.1021/acs.orglett.7b02153

    11. [11]

      Zhao, M.; Lu, W. Org. Lett. 2018, 20, 5264. doi: 10.1021/acs.orglett.8b02208  doi: 10.1021/acs.orglett.8b02208

    12. [12]

      Olah, G. A. Acc. Chem. Res. 1987, 20, 422. doi: 10.1021/ar00143a006  doi: 10.1021/ar00143a006

    13. [13]

      Olah, G. A. Angew. Chem. Int. Edit. 1995, 34, 1393. doi: 10.1002/anie.199513931  doi: 10.1002/anie.199513931

    14. [14]

      Olah, G. A.; Klumpp, D. A. Superelectrophiles and Their Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.

    15. [15]

      Zhou, L.; Lu, W. Acta Chim. Sin. 2015, 73, 1250.[  doi: 10.6023/A15040278

    16. [16]

      Zhou, L.; Lu, W. Org. Lett. 2014, 16, 508. doi: 10.1021/ol403393w  doi: 10.1021/ol403393w

    17. [17]

      Zhao, R.; Lu, W. Org. Lett. 2017, 19, 1768. doi: 10.1021/acs.orglett.7b00536  doi: 10.1021/acs.orglett.7b00536

    18. [18]

      Zhao, R.; Lu, W. Organometallics 2018, 37, 2188. doi: 10.1021/acs.organomet.8b00325  doi: 10.1021/acs.organomet.8b00325

    19. [19]

      Labinger, J. A.; Bercaw, J. E. J. Organomet. Chem. 2015, 793, 47. doi: 10.1016/j.jorganchem.2015.01.027  doi: 10.1016/j.jorganchem.2015.01.027

    20. [20]

      Garnett, J. L.; Hodges, R. J. J. Am. Chem. Soc. 1967, 89, 4546. doi: 10.1021/ja00993a067  doi: 10.1021/ja00993a067

    21. [21]

      Labinger, J. A.; Herring, A. M.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 5628. doi: 10.1021/ja00170a031  doi: 10.1021/ja00170a031

    22. [22]

      Sen, A.; Benvenuto, M. A.; Lin, M.; Hutson, A. C. Basickes, N. J. Am. Chem. Soc. 1994, 116, 998. doi: 10.1021/ja00082a022  doi: 10.1021/ja00082a022

    23. [23]

      Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2001, 123, 8149. doi: 10.1021/ja016280f  doi: 10.1021/ja016280f

    24. [24]

      Weinberg, D. R.; Labinger, J. A.; Bercaw, J. E. Organometallics 2007, 26, 167. doi: 10.1021/om060763g  doi: 10.1021/om060763g

    25. [25]

      Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796 and references therein. doi: 10.1021/jacs.5b09099  doi: 10.1021/jacs.5b09099

    26. [26]

      Periana, R. A.; Taube, D. J.; Evitt, E. R.; L ffler, D. G.; Wentrcek, P. R.; Voss, G.; Masuda, T. Science 1993, 259, 340. doi: 10.1126/science.259.5093.340  doi: 10.1126/science.259.5093.340

    27. [27]

      Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280, 560. doi: 10.1126/science.280.5363.560  doi: 10.1126/science.280.5363.560

    28. [28]

      Gunsalus, N. J.; Konnick, M. M.; Hashiguchi, B. G.; Periana, R. A. Isr. J. Chem. 2014, 54, 1467. doi: 10.1002/ijch.201300130  doi: 10.1002/ijch.201300130

    29. [29]

      Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Chem. Rev. 2017, 117, 8521. doi: 10.1021/acs.chemrev.6b00739  doi: 10.1021/acs.chemrev.6b00739

    30. [30]

      Curto, J. M.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 18. doi: 10.1021/ja5093166  doi: 10.1021/ja5093166

    31. [31]

      Sakakura, T.; Tanaka, M. J. Chem. Soc. Chem. Commun. 1987, 758. doi: 10.1039/C39870000758  doi: 10.1039/C39870000758

    32. [32]

      Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990, 112, 7221. doi: 10.1021/ja00176a022  doi: 10.1021/ja00176a022

    33. [33]

      Lin, M.; Sen, A. Nature 1994, 368, 613. doi: 10.1038/368613a0  doi: 10.1038/368613a0

    34. [34]

      Waltz, K. M.; Hartwig, J. F. Science 1997, 277, 211. doi: 10.1126/science.277.5323.211  doi: 10.1126/science.277.5323.211

    35. [35]

      Chen, H.; Hartwig, J. F. Angew. Chem. Int. Edit. 1999, 38, 3391. doi: 10.1002/(SICI)1521-3773(19991115)38:22<3391::AID-ANIE3391 > 3.0.CO; 2-N  doi: 10.1002/(SICI)1521-3773(19991115)38:22<3391::AID-ANIE3391>3.0.CO;2-N

    36. [36]

      Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995. doi: 10.1126/science.287.5460.1995  doi: 10.1126/science.287.5460.1995

    37. [37]

      Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. Science 2016, 351, 1421. doi: 10.1126/science.aad9289  doi: 10.1126/science.aad9289

    38. [38]

      Smith, K. T.; Berritt, S.; González-Moreiras, M.; Ahn, S.; Smith, M. R., Ⅲ; Baik, M. -H.; Mindiola, D. J. Science 2016, 351, 1424. doi: 10.1126/science.aad9730  doi: 10.1126/science.aad9730

    39. [39]

      Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738. doi: 10.1021/ja00520a030  doi: 10.1021/ja00520a030

    40. [40]

      Baudry, D.; Ephritikhine, M.; Felkin, H.; Holmes-Smith, R. J. Chem. Soc. Chem. Commun. 1983, 788. doi: 10.1039/C39830000788  doi: 10.1039/C39830000788

    41. [41]

      Burk, M. J.; Crabtree, R. H.; McGrath, D. V. J. Chem. Soc. Chem. Commun. 1985, 1829. doi: 10.1039/C39850001829  doi: 10.1039/C39850001829

    42. [42]

      Burk, M. J.; Crabtree, R. H. J. Am. Chem. Soc. 1987, 109, 8025. doi: 10.1021/ja00260a013  doi: 10.1021/ja00260a013

    43. [43]

      Fujii, T.; Saito, Y. J. Chem. Soc. Chem. Commun. 1990, 757. doi: 10.1039/C39900000757  doi: 10.1039/C39900000757

    44. [44]

      Aoki, T.; Crabtree, R. H. Organometallics 1993, 12, 294. doi: 10.1021/om00026a013  doi: 10.1021/om00026a013

    45. [45]

      Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J. Am. Chem. Soc. 1999, 121, 4086. doi: 10.1021/ja983460p  doi: 10.1021/ja983460p

    46. [46]

      Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681. doi: 10.1021/cr900202j  doi: 10.1021/cr900202j

    47. [47]

      Kumar, A.; Bhatti, T. M.; Goldman, A. S. Chem. Rev. 2017, 117, 12357. doi: 10.1021/acs.chemrev.7b00247  doi: 10.1021/acs.chemrev.7b00247

    48. [48]

      Chowdhury, A. D.; Weding, N.; Julis, J.; Franke, R.; Jackstell, R.; Beller, M. Angew. Chem. Int. Edit. 2014, 53, 6477. doi: 10.1002/anie.201402287  doi: 10.1002/anie.201402287

    49. [49]

      Sommer, H.; Juliá-Hernández, F.; Martin, R.; Marek, I. ACS Cent. Sci. 2018, 4, 153. doi: 10.1021/acscentsci.8b00005  doi: 10.1021/acscentsci.8b00005

    50. [50]

      van Leeuwen, P. W. N. M.; Kamer, P. C.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741. doi: 10.1021/cr9902704  doi: 10.1021/cr9902704

    51. [51]

      Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676. doi: 10.1126/science.1074801  doi: 10.1126/science.1074801

    52. [52]

      Tang, X. Jia, X.; Huang, Z. J. Am. Chem. Soc. 2018, 140, 4157. doi: 10.1021/jacs.8b01526  doi: 10.1021/jacs.8b01526

    53. [53]

      Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M. Science 2006, 312, 257. doi: 10.1126/science.1123787  doi: 10.1126/science.1123787

    54. [54]

      Dupuy, S.; Zhang, K. -F.; Goutierre, A. -S.; Baudoin, O. Angew. Chem. Int. Edit. 2016, 55, 14793. doi: 10.1002/anie.201608535  doi: 10.1002/anie.201608535

    55. [55]

      Juliá-Hernández, F.; Moragas, T.; Cornella, J.; Martin, R. Nature 2017, 545, 84. doi: 10.1038/nature22316  doi: 10.1038/nature22316

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    19. [19]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    20. [20]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

Metrics
  • PDF Downloads(22)
  • Abstract views(1113)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return