Citation: WANG Qingbing, GUO Zhengwei, CHEN Gong, HE Gang. DPPF-Mediated C―H Arylation of Arenes with Aryl Iodides for Synthesis of Biaryl Linkages[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 1021-1026. doi: 10.3866/PKU.WHXB201811044 shu

DPPF-Mediated C―H Arylation of Arenes with Aryl Iodides for Synthesis of Biaryl Linkages

  • Corresponding author: CHEN Gong, gongchen@nankai.edu.cn HE Gang, hegang@nankai.edu.cn
  • Received Date: 30 November 2018
    Revised Date: 12 January 2019
    Accepted Date: 22 January 2019
    Available Online: 24 September 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China 21672105Natural Science Foundation of Tianjin, China 18JCZDJC32800The project was supported by the National Natural Science Foundation of China 91753124The project was supported by the National Natural Science Foundation of China (21672105, 21725204, 91753124) and Natural Science Foundation of Tianjin, China (17JCYBJC19700, 18JCZDJC32800)Natural Science Foundation of Tianjin, China 17JCYBJC19700The project was supported by the National Natural Science Foundation of China 21725204

  • The broad existence of the biaryl linkage in bioactive organic molecules and functional materials makes it an attractive synthesis target via construction of aryl-aryl carbon bonds. Transition metal catalyzed cross-coupling reactions of two pre-functionalized aryl partners, e.g., Suzuki-Miyaura cross-coupling and Negishi cross-coupling reactions, are the main methods typically used for the construction of biaryl linkages. Since the end of the last century, transition metal catalyzed direct C-H arylation of unactivated arenes has emerged as a practical alternative to the well-established cross-coupling strategies. However, the use of transition metal catalysts and/or organometallic reagents would lead to problems, such as the disposal of waste from large-scale syntheses and the removal of heavy metal contaminants from pharmaceutical intermediates. In this regard, the base-promoted homolytic aromatic substitution (BHAS) reaction of aryl halides with unactivated arenes offers a simpler strategy for the synthesis of biaryl scaffolds, and avoids the use of transition metals. Although the BHAS reaction can proceed to a small extent without any additives, particularly at elevated temperatures, the addition of organic promoters would significantly accelerate the reaction rate and improve the overall efficiency of the process. Over the past ten years, a wide variety of N- and O-based organic promoters have been developed to promote the BHAS reaction in the presence of the tert-butoxide base. The mechanism of the BHAS reaction has been studied extensively, and is accepted as occurring via a radical chain process involving an aryl radical. However, the role and mode of initiation of most organic promoters studied remain controversial. The development of more and varied organic promoters will surely promote the mechanistic understanding and further development of the BHAS reaction. Herein, we report that 1, 1'-bis(diphenylphosphino)ferrocene (dppf, or DPPF) can act as a P-based promoter to facilitate the direct arylation of unactivated arenes with aryl iodides using potassium tert-butoxide as the base and electron donor. A broad range of aryl iodides and arenes reacted smoothly under the optimized reaction conditions, giving arylated products in good yields and with high regio-selectivity. Intramolecular C-H arylation also worked well following a sequence of single electron transfer (SET)/initiation, 5-exo-trig aryl radical addition, ring expansion, deprotonation, and re-aromatization/propagation. A mechanistic study indicated that the diphenylphosphino group of dppf played a vital role in the initiation step by enhancing the SET-inhibiting ability of the tert-butoxide anion. A primary kinetic isotope effect was observed in the parallel reactions between 4-methoxy-iodobenzene with benzene and deuterated benzene, implying that the deprotonation of the cyclohexadienyl radical intermediate by tert-butoxide was the rate-determining step in the radical chain pathway.
  • 加载中
    1. [1]

      Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem. Int. Edit. 1990, 29, 977. doi: 10.1002/anie.199009771  doi: 10.1002/anie.199009771

    2. [2]

      Zhang, Y. -F.; Shi, Z. -J. Acc. Chem. Res. 2018, 52, 161. doi: 10.1021/acs.accounts.8b00408  doi: 10.1021/acs.accounts.8b00408

    3. [3]

      Lei, A.; Liu, W.; Liu, C.; Chen, M. Dalton Trans. 2010, 39, 10352. doi: 10.1039/c0dt00486c  doi: 10.1039/c0dt00486c

    4. [4]

      Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Edit. 2009, 48, 9792. doi: 10.1002/anie.200902996  doi: 10.1002/anie.200902996

    5. [5]

      Bolton, R.; Williams, G. H. Chem. Soc. Rev. 1986, 15, 261. doi: 10.1039/cs9861500261  doi: 10.1039/cs9861500261

    6. [6]

      Bowman, W. R.; Storey, J. M. Chem. Soc. Rev. 2007, 36, 1803. doi: 10.1039/b605183a  doi: 10.1039/b605183a

    7. [7]

      Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 4673. doi: 10.1021/ol8019764  doi: 10.1021/ol8019764

    8. [8]

      Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737. doi: 10.1021/ja103050x  doi: 10.1021/ja103050x

    9. [9]

      Sun, C. -L.; Li, H.; Yu, D. -G.; Yu, M.; Zhou, X.; Lu, X. -Y.; Huang, K.; Zheng, S. -F.; Li, B. -J.; Shi, Z. -J. Nat. Chem. 2010, 2, 1044. doi: 10.1038/NCHEM.862  doi: 10.1038/NCHEM.862

    10. [10]

      Shirakawa, E.; Itoh, K. -I.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537. doi: 10.1021/ja1080822  doi: 10.1021/ja1080822

    11. [11]

      Leadbeater, N. E. Nat. Chem. 2010, 2, 1007. doi: 10.1038/ NCHEM.913  doi: 10.1038/NCHEM.913

    12. [12]

      Studer, A.; Curran, D. P. Angew. Chem. Int. Edit. 2011, 50, 5018. doi: 10.1002/anie.201101597  doi: 10.1002/anie.201101597

    13. [13]

      Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374. doi: 10.3762/bjoc.8.159  doi: 10.3762/bjoc.8.159

    14. [14]

      Chan, T. L.; Wu, Y.; Choy, P. Y.; Kwong, F. Y. Chem. -Eur. J. 2013, 19, 15802. doi: 10.1002/chem.201301583  doi: 10.1002/chem.201301583

    15. [15]

      Sun, C. -L.; Shi, Z. -J. Chem. Rev. 2014, 114, 9219. doi: 10.1021/cr400274j  doi: 10.1021/cr400274j

    16. [16]

      Hofmann, J.; Heinrich, M. R. Tetrahedron Lett. 2016, 57, 4334. doi: 10.1016/j.tetlet.2016.08.034  doi: 10.1016/j.tetlet.2016.08.034

    17. [17]

      Qiu, Y.; Liu, Y.; Yang, K.; Hong, W.; Li, Z.; Wang, Z.; Yao, Z.; Jiang, S. Org. Lett. 2011, 13, 3556. doi: 10.1021/ol2009208  doi: 10.1021/ol2009208

    18. [18]

      Liu, H.; Yin, B.; Gao, Z.; Li, Y.; Jiang, H. Chem. Commun. 2012, 48, 2033. doi: 10.1039/c2cc16790e  doi: 10.1039/c2cc16790e

    19. [19]

      Ng, Y. S.; Chan, C. S.; Chan, K. S. Tetrahedron Lett. 2012, 53, 3911. doi: 10.1016/j.tetlet.2012.05.073  doi: 10.1016/j.tetlet.2012.05.073

    20. [20]

      Tanimoro, K.; Ueno, M.; Takeda, K.; Kirihata, M.; Tanimori, S. J. Org. Chem. 2012, 77, 7844. doi: 10.1021/jo3008594  doi: 10.1021/jo3008594

    21. [21]

      Chen, W. -C.; Hsu, Y. -C.; Shih, W. -C.; Lee, C. -Y.; Chuang, W. -H.; Tsai, Y. -F.; Chen, P. P. -Y.; Ong, T. -G. Chem. Commun. 2012, 48, 6702. doi: 10.1039/c2cc32519e  doi: 10.1039/c2cc32519e

    22. [22]

      Sharma, S.; Kumar, M.; Kumar, V.; Kumar, N. Tetrahedron Lett. 2013, 54, 4868. doi: 10.1016/j.tetlet.2013.06.125  doi: 10.1016/j.tetlet.2013.06.125

    23. [23]

      Liu, W.; Tian, F.; Wang, X.; Yu, H.; Bi, Y. Chem. Commun. 2013, 49, 2983. doi: 10.1039/c3cc40695d  doi: 10.1039/c3cc40695d

    24. [24]

      Zhao, H.; Shen, J.; Guo, J.; Ye, R.; Zeng, H. Chem. Commun. 2013, 49, 2323. doi: 10.1039/c3cc00019b  doi: 10.1039/c3cc00019b

    25. [25]

      Song, Q.; Zhang, D.; Zhu, Q.; Xu, Y. Org. Lett. 2014, 16, 5272. doi: 10.1021/ol502370r  doi: 10.1021/ol502370r

    26. [26]

      Cuthbertson, J.; Gray, V. J.; Wilden, J. D. Chem. Commun. 2014, 50, 2575. doi: 10.1039/c3cc49019j  doi: 10.1039/c3cc49019j

    27. [27]

      Wu, Y.; Choy, P. Y.; Kwong, F. Y. Org. Biomol. Chem. 2014, 12, 6820. doi: 10.1039/c4ob01211a  doi: 10.1039/c4ob01211a

    28. [28]

      Yi, H.; Jutand, A.; Lei, A. Chem. Commun. 2015, 51, 545. doi: 10.1039/c4cc07299e  doi: 10.1039/c4cc07299e

    29. [29]

      Zhou, S.; Anderson, G. M.; Mondal, B.; Doni, E.; Ironmonger, V.; Kranz, M.; Tuttle, T.; Murphy, J. A. Chem. Sci. 2014, 5, 476. doi: 10.1039/c3sc52315b  doi: 10.1039/c3sc52315b

    30. [30]

      Zhou, S.; Doni, E.; Anderson, G. M.; Kane, R. G.; MacDougall, S. W.; Ironmonger, V. M.; Tuttle, T.; Murphy, J. A. J. Am. Chem. Soc. 2014, 136, 17818. doi: 10.1021/ja5101036  doi: 10.1021/ja5101036

    31. [31]

      Barham, J. P.; Coulthard, G.; Emery, K. J.; Doni, E.; Cumine, F.; Nocera, G.; John, M. P.; Berlouis, L. E. A.; McGuire, T.; Tuttle, T.; et al. J. Am. Chem. Soc. 2016, 138, 7402. doi: 10.1021/jacs.6b03282  doi: 10.1021/jacs.6b03282

    32. [32]

      Gao, Y.; Tang, P.; Zhou, H.; Zhang, W.; Yang, H.; Yan, N.; Hu, G.; Mei, D.; Wang, J.; Ma, D. Angew. Chem. Int. Edit. 2016, 55, 3124. doi: 10.1002/anie.201510081  doi: 10.1002/anie.201510081

    33. [33]

      Paira, R.; Singh, B.; Hota, P. K.; Ahmed, J.; Sau, S. C.; Johnpeter, J. P.; Mandal, S. K. J. Org. Chem. 2016, 81, 2432. doi: 10.1021/acs.joc.6b00002  doi: 10.1021/acs.joc.6b00002

    34. [34]

      Zhang, L.; Yang, H.; Jiao, L. J. Am. Chem. Soc. 2016, 138, 7151. doi: 10.1021/jacs.6b03442  doi: 10.1021/jacs.6b03442

    35. [35]

      Yang, H.; Chu, D. -Z.; Jiao, L. Chem. Sci. 2018, 9, 1534. doi: 10.1039/c7sc04450j  doi: 10.1039/c7sc04450j

    36. [36]

      Guo, Z. W.; Li, M.; Mou, X. Q.; He, G.; Xue, X. S.; Chen, G. Org. Lett. 2018, 20, 1684. doi: 10.1021/acs.orglett.8b00530  doi: 10.1021/acs.orglett.8b00530

    37. [37]

      Hou, L.; Zhou, Z.; Wang, D.; Zhang, Y.; Chen, X.; Zhou, L.; Hong, Y.; Liu, W.; Hou, Y.; Tong, X. Org. Lett. 2017, 19, 6328. doi: 10.1021/acs.orglett.7b03135  doi: 10.1021/acs.orglett.7b03135

    38. [38]

      Studer, A.; Curran, D. P. Nat. Chem. 2014, 6, 765. doi: 10.1038/NCHEM.2031  doi: 10.1038/NCHEM.2031

    39. [39]

      Hofmann, J.; Clark, T.; Heinrich, M. R. J. Org. Chem. 2016, 81, 9785. doi: 10.1021/acs.joc.6b01840  doi: 10.1021/acs.joc.6b01840

    40. [40]

      Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. 2011, 13, 3242. doi: 10.1021/ol201160s  doi: 10.1021/ol201160s

    41. [41]

      Sun, C. -L.; Gu, Y. -F.; Huang, W. -P.; Shi, Z. -J. Chem. Commun. 2011, 47, 9813. doi: 10.1039/c1cc13907j  doi: 10.1039/c1cc13907j

    42. [42]

      Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 14, 2838. doi: 10.1021/ol301077y  doi: 10.1021/ol301077y

    43. [43]

      Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org. Lett. 2012, 14, 5306. doi: 10.1021/ol302489n  doi: 10.1021/ol302489n

    44. [44]

      De, S.; Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14, 4466. doi: 10.1021/ol3019677  doi: 10.1021/ol3019677

    45. [45]

      Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Edit. 2012, 51, 3066. doi: 10.1002/anie.201107334  doi: 10.1002/anie.201107334

  • 加载中
    1. [1]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    2. [2]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    3. [3]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    4. [4]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    8. [8]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    9. [9]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    10. [10]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    11. [11]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    12. [12]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    15. [15]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    16. [16]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    17. [17]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    18. [18]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    19. [19]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(9)
  • Abstract views(763)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return