Citation: CHEN Qiang, JIANG Li-Xue, LI Hai-Fang, CHEN Jiao-Jiao, ZHAO Yan-Xia, HE Sheng-Gui. Thermal Activation of Methane by Diatomic Vanadium Boride Cations[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 1014-1020. doi: 10.3866/PKU.WHXB201811039 shu

Thermal Activation of Methane by Diatomic Vanadium Boride Cations

  • Corresponding author: ZHAO Yan-Xia, chemzyx@iccas.ac.cn HE Sheng-Gui, shengguihe@iccas.ac.cn
  • Received Date: 28 November 2018
    Revised Date: 19 December 2018
    Accepted Date: 27 December 2018
    Available Online: 3 September 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China 21773253Youth Innovation Promotion Association, Chinese Academy of Sciences 2018041China Postdoctoral Science Foundation 2017M611002The project was supported by the National Natural Science Foundation of China (91645203, 21773253), China Postdoctoral Science Foundation(2017M611002), Beijing Natural Science Foundation, China (2182092), and Youth Innovation Promotion Association, Chinese Academy of Sciences(2018041)Beijing Natural Science Foundation, China 2182092The project was supported by the National Natural Science Foundation of China 91645203

  • Methane activation by transition metal species has been extensively investigated over the past few decades. It is observed that ground-state monocations of bare 3d transition metals are inert toward CH4 at room temperature because of unfavorable thermodynamics. In contrast, many mono-ligated 3d transition metal cations, such as MO+ (M = Mn, Fe, Co, Cu, Zn), MH+ (M = Fe, Co), and NiX+ (X = H, CH3, F), as well as several bis-ligated 3d transition metal cations including OCrO+, Ni(H)(OH)+, and Fe(O)(OH)+ activate the C―H bond of methane under thermal collision conditions because of the pronounced ligand effects. In most of the above-mentioned examples, the 3d metal atoms are observed to cooperate with the attached ligands to activate the C―H bond. Compared to the extensive studies on active species comprising of middle and late 3d transition metals, the knowledge about the reactivity of early 3d transition metal species toward methane and the related C―H activation mechanisms are still very limited. Only two early 3d transition metal species HMO+ (M = Ti and V) are discovered so far to activate the C―H bond of methane via participation of their metal atoms. In this study, by performing mass spectrometric experiments and density functional theory calculations, we have identified that the diatomic vanadium boride cation (VB+) can activate methane to produce a dihydrogen molecule and carbon-boron species under thermal collision conditions. The strong electrostatic interaction makes the reaction preferentially proceed the V side. To generate experimentally observed product ions, a two-state reactivity scenario involving spin conversion from high-spin sextet to low-spin quartet is necessary at the entrance of the reaction. This result is consistent with the reported reactions of 3d transition metal species with CH4, in which the C―H bond cleavage generally occurs in the low-spin states, even if the ground states of the related active species are in the high-spin states. For VB+ + CH4, the insertion of the synergetic V―B unit (rather than a single V or B atom) into the H3C―H bond causes the initial C―H bond activation driven by the strong bond strengths of V―CH3 and B―H. The mechanisms of methane activation by VB+ discussed in this study may provide useful guidance to the future studies on methane activation by early transition metal systems.
  • 加载中
    1. [1]

      Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879. doi: 10.1021/cr9411886  doi: 10.1021/cr9411886

    2. [2]

      Wang, V. C.; Maji, S.; Chen, P. P.; Lee, H. K.; Yu, S. S.; Chan, S. I. Chem. Rev. 2017, 117, 8574. doi: 10.1021/acs.chemrev.6b00624  doi: 10.1021/acs.chemrev.6b00624

    3. [3]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a  doi: 10.1038/417507a

    4. [4]

      Olivos-Suarez, A. I.; Szécsényi, À.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; Gascon, J. ACS Catal. 2016, 6, 2965. doi: 10.1021/acscatal.6b00428  doi: 10.1021/acscatal.6b00428

    5. [5]

      Böhme, D. K.; Schwarz, H. Angew. Chem. Int. Ed. 2005, 44, 2336. doi: 10.1002/anie.200461698  doi: 10.1002/anie.200461698

    6. [6]

      Johnson, G. E.; Mitrić, R.; Bonačić-Koutecký, V.; Castleman, A. W., Jr. Chem. Phys. Lett. 2009, 475, 1. doi: 10.1016/j.cplett.2009.04.003  doi: 10.1016/j.cplett.2009.04.003

    7. [7]

      Zhai, H. -J.; Wang, L. -S. Chem. Phys. Lett. 2010, 500, 185. doi: 10.1016/j.cplett.2010.10.001  doi: 10.1016/j.cplett.2010.10.001

    8. [8]

      Yin, S.; Bernstein, E. R. Int. J. Mass Spectrom. 2012, 321-322, 49. doi: 10.1016/j.ijms.2012.06.001  doi: 10.1016/j.ijms.2012.06.001

    9. [9]

      O'Hair, R. A. J. Int. J. Mass Spectrom. 2015, 377, 121. doi: 10.1016/j.ijms.2014.05.003  doi: 10.1016/j.ijms.2014.05.003

    10. [10]

      Lang, S. M.; Bernhardt, T. M.; Chernyy, V.; Bakker, J. M.; Barnett, R. N.; Landman, U. Angew. Chem. Int. Ed. 2017, 56, 13406. doi: 10.1002/anie.201706009  doi: 10.1002/anie.201706009

    11. [11]

      Asmis, K. R.; Fielicke, A. Top. Catal. 2018, 61, 1. doi: 10.1007/s11244-018-0906-5  doi: 10.1007/s11244-018-0906-5

    12. [12]

      Roithová, J.; Schrӧder, D. Chem. Rev. 2010, 110, 1170. doi: 10.1021/cr900183p  doi: 10.1021/cr900183p

    13. [13]

      Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424  doi: 10.1002/anie.201006424

    14. [14]

      Schwarz, H.; González-Navarrete, P.; Li, J.; Schlangen, M.; Sun, X.; Weiske, T.; Zhou, S. Organometallics 2017, 36, 8. doi: 10.1021/acs.organomet.6b00372  doi: 10.1021/acs.organomet.6b00372

    15. [15]

      Wang, D.; Ding, X. -L.; Liao, H.; Dai, J. Acta Phys. -Chim. Sin. 2019, in press.  doi: 10.3866/PKU.WHXB201809006

    16. [16]

      Buckner, S. W.; MacMahon, T. J.; Byrd, G. D.; Freiser, B. S. Inorg. Chem. 1989, 28, 3511. doi: 10.1021/ic00317a024  doi: 10.1021/ic00317a024

    17. [17]

      Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2769. doi: 10.1021/ja00007a070  doi: 10.1021/ja00007a070

    18. [18]

      Irikura, K. K.; Beauchamp, J. L. J. Phys. Chem. 1991, 95, 8344. doi: 10.1021/j100174a057  doi: 10.1021/j100174a057

    19. [19]

      Shayesteh, A.; Lavrov, V. V.; Koyanagi, G. K.; Bohme, D. K. J. Phys. Chem. A 2009, 113, 5602. doi: 10.1021/jp900671c  doi: 10.1021/jp900671c

    20. [20]

      Schröder, D.; Schwarz, H. Angew. Chem. Int. Ed. Engl. 1990, 29, 1433. doi: 10.1002/anie.199014331  doi: 10.1002/anie.199014331

    21. [21]

      Schröeder, D.; Fiedler, A.; Hrusak, J.; Schwarz, H. J. Am. Chem. Soc. 1992, 114, 1215. doi: 10.1021/ja00030a014  doi: 10.1021/ja00030a014

    22. [22]

      Chen, Y. -M.; Clemmer, D. E.; Armentrout, P. B. J. Am. Chem. Soc. 1994, 116, 7815. doi: 10.1021/ja00096a044  doi: 10.1021/ja00096a044

    23. [23]

      Ryan, M. F.; Fiedler, A.; Schröeder, D.; Schwarz, H. Organometallics 1994, 13, 4072. doi: 10.1021/om00022a051  doi: 10.1021/om00022a051

    24. [24]

      Ryan, M. F.; Fiedler, A.; Schroeder, D.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 2033. doi: 10.1021/ja00112a017  doi: 10.1021/ja00112a017

    25. [25]

      Schröder, D.; Schwarz, H.; Clemmer, D. E.; Chen, Y.; Armentrout, P. B.; Baranov, V. I.; Böhme, D. K. Int. J. Mass Spectrom. Ion Processes 1997, 161, 175. doi: 10.1016/S0168-1176(96)04428-X  doi: 10.1016/S0168-1176(96)04428-X

    26. [26]

      Aguirre, F.; Husband, J.; Thompson, C. J.; Stringer, K. L.; Metz, R. B. J. Chem. Phys. 2002, 116, 4071. doi: 10.1063/1.1448489  doi: 10.1063/1.1448489

    27. [27]

      Dietl, N.; van der Linde, C.; Schlangen, M.; Beyer, M. K.; Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 4966. doi: 10.1002/anie.201100606  doi: 10.1002/anie.201100606

    28. [28]

      Ard, S. G.; Melko, J. J.; Ushakov, V. G.; Johnson, R.; Fournier, J. A.; Shuman, N. S.; Guo, H.; Troe, J.; Viggiano, A. A. J. Phys. Chem. A 2014, 118, 2029. doi: 10.1021/jp5000705  doi: 10.1021/jp5000705

    29. [29]

      Yue, L.; Li, J.; Zhou, S.; Sun, X.; Schlangen, M.; Shaik, S.; Schwarz, H. Angew. Chem. Int. Ed. 2017, 56, 10219. doi: 10.1002/anie.201703485  doi: 10.1002/anie.201703485

    30. [30]

      Carlin, T. J.; Sallans, L.; Cassady, C. J.; Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105, 6320. doi: 10.1021/ja00358a027  doi: 10.1021/ja00358a027

    31. [31]

      Zhang, Q.; Bowers, M. T. J. Phys. Chem. A 2004, 108, 9755. doi: 10.1021/jp047943t  doi: 10.1021/jp047943t

    32. [32]

      Liu, S.; Geng, Z.; Wang, Y.; Yan, Y. J. Phys. Chem. A 2012, 116, 4560. doi: 10.1021/jp210924a  doi: 10.1021/jp210924a

    33. [33]

      Schlangen, M.; Schroder, D.; Schwarz, H. Chem. Eur. J. 2007, 13, 6810. doi: 10.1002/chem.200700506  doi: 10.1002/chem.200700506

    34. [34]

      Armélin, M.; Schlangen, M.; Schwarz, H. Chem. Eur. J. 2008, 14, 5229. doi: 10.1002/chem.200800029  doi: 10.1002/chem.200800029

    35. [35]

      Schlangen, M.; Schwarz, H. Helv. Chim. Acta 2008, 91, 2203. doi: 10.1002/hlca.200890238  doi: 10.1002/hlca.200890238

    36. [36]

      Fiedler, A.; Kretzschmar, I.; Schröder, D.; Schwarz, H. J. Am. Chem. Soc. 1996, 118, 9941. doi: 10.1021/ja960157k  doi: 10.1021/ja960157k

    37. [37]

      Schlangen, M.; Schroder, D.; Schwarz, H. Angew. Chem. Int. Ed. 2007, 46, 1641. doi: 10.1002/anie.200603266  doi: 10.1002/anie.200603266

    38. [38]

      Dede, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Baik, M. H. J. Am. Chem. Soc. 2009, 131, 12634. doi: 10.1021/ja902093f  doi: 10.1021/ja902093f

    39. [39]

      Lakuntza, O.; Matxain, J. M.; Ruiperez, F.; Besora, M.; Maseras, F.; Ugalde, J. M.; Schlangen, M.; Schwarz, H. Phys. Chem. Chem. Phys. 2012, 14, 9306. doi: 10.1039/C2CP23502A  doi: 10.1039/C2CP23502A

    40. [40]

      Schröder, D.; Schwarz, H. Angew. Chem. Int. Ed. Engl. 1991, 30, 991. doi: 10.1002/anie.199109911  doi: 10.1002/anie.199109911

    41. [41]

      Kretschmer, R.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Ed. 2013, 52, 6097. doi: 10.1002/anie.201300900  doi: 10.1002/anie.201300900

    42. [42]

      Chen, Q.; Zhao, Y. -X.; Jiang, L. -X.; Li, H. -F.; Chen, J. -J.; Zhang, T.; Liu, Q. -Y.; He, S. -G. Phys. Chem. Chem. Phys. 2018, 20, 4641. doi: 10.1039/C8CP00071A  doi: 10.1039/C8CP00071A

    43. [43]

      Chen, Q.; Zhao, Y. -X.; Jiang, L. -X.; Chen, J. -J.; He, S. -G. Angew. Chem. Int. Ed. 2018, 57, 14134. doi: 10.1002/anie.201808780  doi: 10.1002/anie.201808780

    44. [44]

      Shaik, S.; Danovich, D.; Fiedler, A.; Schröder, D.; Schwarz, H. Helv. Chim. Acta 1995, 78, 1393. doi: 10.1002/hlca.19950780602  doi: 10.1002/hlca.19950780602

    45. [45]

      Wu, X. -N.; Xu, B.; Meng, J. -H.; He, S. -G. Int. J. Mass Spectrom. 2012, 310, 57. doi: 10.1016/j.ijms.2011.11.011  doi: 10.1016/j.ijms.2011.11.011

    46. [46]

      Yuan, Z.; Zhao, Y. -X.; Li, X. -N.; He, S. -G. Int. J. Mass Spectrom. 2013, 354-355, 105. doi: 10.1016/j.ijms.2013.06.004  doi: 10.1016/j.ijms.2013.06.004

    47. [47]

      Yuan, Z.; Liu, Q. -Y.; Li, X. -N.; He, S. -G. Int. J. Mass Spectrom. 2016, 407, 62. doi: 10.1016/j.ijms.2016.07.004  doi: 10.1016/j.ijms.2016.07.004

    48. [48]

      Gioumousis, G.; Stevenson, D. P. J. Chem. Phys. 1958, 29, 294. doi: 10.1063/1.1744477  doi: 10.1063/1.1744477

    49. [49]

      Kummerlowe, G.; Beyer, M. K. Int. J. Mass Spectrom. 2005, 244, 84. doi: 10.1016/j.ijms.2005.03.012  doi: 10.1016/j.ijms.2005.03.012

    50. [50]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, USA, 2009.

    51. [51]

      Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. doi: 10.1063/1.2370993  doi: 10.1063/1.2370993

    52. [52]

      Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829. doi: 10.1063/1.467146  doi: 10.1063/1.467146

    53. [53]

      Schlegel, H. B. J. Comput. Chem. 1982, 3, 214. doi: 10.1002/jcc.540030212  doi: 10.1002/jcc.540030212

    54. [54]

      Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. doi: 10.1063/1.456010  doi: 10.1063/1.456010

    55. [55]

      Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 1996.

    56. [56]

      Lide, D. R. Handbook of Chemistry and Physics, 84th Ed.; CRC Press: Boca Raton, USA, 2003; Sect. 9, p. 52.

  • 加载中
    1. [1]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    4. [4]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    5. [5]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    6. [6]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    7. [7]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    10. [10]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    13. [13]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    14. [14]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    15. [15]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    16. [16]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    17. [17]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    20. [20]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

Metrics
  • PDF Downloads(14)
  • Abstract views(1072)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return