Citation: WANG Zhen, LI En, HE Zhiqi, CHEN Jiean, HUANG Yong. Dehydrogenative Annulation of γ, δ-Unsaturated Amides and Alkynes via Double C―H Activation[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 906-912. doi: 10.3866/PKU.WHXB201811038 shu

Dehydrogenative Annulation of γ, δ-Unsaturated Amides and Alkynes via Double C―H Activation

  • Corresponding author: CHEN Jiean, chenja@pkusz.edu.cn HUANG Yong, huangyong@pkusz.edu.cn
  • Received Date: 27 November 2018
    Revised Date: 12 December 2018
    Accepted Date: 21 December 2018
    Available Online: 21 September 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China 21825101Shenzhen Basic Research Program, China JCYJ20170818085438996The project was supported by the National Natural Science Foundation of China 21572004The project was supported by the National Natural Science Foundation of China 21602007Shenzhen Basic Research Program, China JCYJ20170818085510474The project was supported by the National Natural Science Foundation of China (21825101, 21572004, 21602007), Shenzhen Basic Research Program, China (JCYJ20170818085510474, JCYJ20170818085438996)

  • Pyridones represent an important family of heterocycles that exhibit a wide range of biological activities. They are often found in pharmaceutical agents and biomolecules. Several transition-metal-catalyzed transformations have been developed to access this family of heterocycles. Among them, C―H bond activation has recently emerged as a general strategy for the construction of substituted pyridones. In most cases, the core nitrogen-containing heterocycle is assembled via the dehydrogenative annulation of α, β-unsaturated amides and alkynes. Such processes involve a cascade sequence of N―H cleavage, sp2 C―H activation, and annulation. Despite this progress, the more readily available α, β-saturated amides are rarely used. Ideally, tethering the direct dehydrogenation of an amide with the above-mentioned C―H annulation cascade would give a more practical synthesis of pyridones. Nevertheless, the dehydrogenation of amides under mild conditions is a synthetic challenge due to their intrinsic weak α-acidity. Recently, we have reported a general protocol for the aerobic dehydrogenation of γ, δ-unsaturated amides, acids, and ketones. A key Ir―allyl intermediate was believed responsible for enhancing the α-acidity of the amides studied, which enables the dehydrogenation step to occur under mild reaction conditions. Herein, we describe a new method for the synthesis of polysubstituted pyridones using γ, δ-unsaturated amides and alkynes. In the presence of [RhCp*Cl2]2, the dehydrogenation step occurs via β-C―H bond activation. The resulting π-allyl―Rh intermediate undergoes an accelerated dehydrogenation reaction to afford the doubly unsaturated amide. This in-situ generated dienamide undergoes sp2 C―H activation at the β-position and a subsequent alkyne insertion/cyclization reaction to yield the target heterocycle. Regeneration of the Rh catalyst is accomplished using an external oxidant and completes the streamlined double C―H activation and double dehydrogenation catalytic cycle. Various functional groups are well tolerated. The γ-alkenyl moiety not only facilitates the direct dehydrogenation of amides, but also serves as a handle for further derivatization of the as-obtained products. To gain a mechanistic insight into the reaction cascade, a set of control experiments were carried out. The results demonstrate that the dienamide is one of the key reaction intermediates. NMR experiments confirmed that the fast dehydrogenation process occurs during the early stage of the reaction. The alkyne insertion is believed to be the rate-determining step in the reaction cascade, as suggested by competition experiments.
  • 加载中
    1. [1]

      Kozikowski, A. P.; Tückmantel, W. Acc. Chem. Res. 1999, 32, 641. doi: 10.1021/ar9800892  doi: 10.1021/ar9800892

    2. [2]

      Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888. doi: 10.1021/ja00968a057  doi: 10.1021/ja00968a057

    3. [3]

      Mitscher, L. A. Chem. Rev. 2005, 105, 559. doi: 10.1021/cr030101q  doi: 10.1021/cr030101q

    4. [4]

      Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168. doi: 10.1039/B911516C  doi: 10.1039/B911516C

    5. [5]

      Bergman, R. G. Nature 2007, 446, 391. doi: 10.1038/446391a  doi: 10.1038/446391a

    6. [6]

      Ackermann, L. Chem. Rev. 2011, 111, 1315. doi: 10.1021/cr100412j  doi: 10.1021/cr100412j

    7. [7]

      Corey, J. Y. Chem. Rev. 2011, 42, 863. doi: 10.1021/cr900359c  doi: 10.1021/cr900359c

    8. [8]

      Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. doi: 10.1021/cr030677f  doi: 10.1021/cr030677f

    9. [9]

      Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744. doi: 10.1039/C3CS60020C  doi: 10.1039/C3CS60020C

    10. [10]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. doi: 10.1021/cr900184e  doi: 10.1021/cr900184e

    11. [11]

      Guo, X. -X.; Gu, D. -W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622. doi: 10.1021/cr500410y  doi: 10.1021/cr500410y

    12. [12]

      Su, Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12, 5462. doi: 10.1021/ol102306c  doi: 10.1021/ol102306c

    13. [13]

      Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565. doi: 10.1021/ja103776u  doi: 10.1021/ja103776u

    14. [14]

      Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13, 3278. doi: 10.1021/ol201244s  doi: 10.1021/ol201244s

    15. [15]

      Shankar, M.; Guntreddi, T.; Ramesh, E.; Sahoo, A. K. Org. Lett. 2017, 19, 5665. doi: 10.1021/acs.orglett.7b02824  doi: 10.1021/acs.orglett.7b02824

    16. [16]

      Tulichala, R. N. P.; Shankar, M.; Swamy, K. C. K. J. Org. Chem. 2017, 82, 5068. doi: 10.1021/acs.joc.7b00008  doi: 10.1021/acs.joc.7b00008

    17. [17]

      Yu, Y.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2014, 16, 2146. doi: 10.1021/ol500611d  doi: 10.1021/ol500611d

    18. [18]

      Matsubara, T.; Ilies, L.; Nakamura, E. Chem. Asian J. 2015, 11, 380. doi: 10.1002/asia.201501095  doi: 10.1002/asia.201501095

    19. [19]

      Chen, Y.; Turlik, A.; Newhouse, T. R. J. Am. Chem. Soc. 2016, 138, 1166. doi: 10.1021/jacs.5b12924  doi: 10.1021/jacs.5b12924

    20. [20]

      Chen, M.; Dong, G. J. Am. Chem. Soc. 2017, 139, 7757. doi: 10.1021/jacs.7b04722  doi: 10.1021/jacs.7b04722

    21. [21]

      Chen, M.; Alexander, J. R.; Dong, G. Angew. Chem. Int. Ed. 2018, 57, 16205. doi: 10.1002/anie.201811197  doi: 10.1002/anie.201811197

    22. [22]

      Wang, Z.; He, Z.; Zhang, L.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 735. doi: 10.1021/jacs.7b11351  doi: 10.1021/jacs.7b11351

    23. [23]

      Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606. doi: 10.1039/clsc00235j  doi: 10.1039/clsc00235j

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    19. [19]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    20. [20]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

Metrics
  • PDF Downloads(13)
  • Abstract views(1172)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return