Citation: WANG Haomin, HE Maoshuai, ZHANG Yingying. Carbon Nanotube Films: Preparation and Application in Flexible Electronics[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1207-1223. doi: 10.3866/PKU.WHXB201811011 shu

Carbon Nanotube Films: Preparation and Application in Flexible Electronics

  • Corresponding author: HE Maoshuai, hemaoshuai@qust.edu.cn ZHANG Yingying, yingyingzhang@tsinghua.edu.cn
  • Received Date: 8 November 2018
    Revised Date: 30 November 2018
    Accepted Date: 3 December 2018
    Available Online: 7 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51672153) and the National Key Basic Research Program of China (973) (2016YFA0200103)the National Natural Science Foundation of China 51672153the National Key Basic Research Program of China (973) 2016YFA0200103

  • Flexible electronic devices have attracted immense attention in recent years. Conventional electronics that are predominantly fabricated with rigid metallic materials demonstrate poor flexibility. Compared to traditional electronic devices, flexible electronic devices with better flexibility can adapt to different working environments. Consequently, they fit perfectly with different systems with minimal rejections. However, such flexible electronic devices need to achieve good extensibility and flexibility without compromising on their electronic properties. Therefore, new challenges and requirements arise while fabricating conductive materials. Manufacturing of flexible metal electrodes for flexible electronic devices include strategies such as reducing the thickness of the electrodes and designing electrodes with unique structures. However, these technologies are complex and expensive. Carbon nanotube (CNT) films exhibit good flexibility, excellent conductivity, good chemical and thermal stability, as well as good optical transparency, making them ideal candidates for flexible electronics. Therefore, the preparation and application of CNT films for the development of next generation flexible electronics have been extensively studied. In this review, we summarize the recent advances in the preparation of CNT films and their application in flexible electronic devices. Initially, the two main kinds of preparation methods for CNT films—dry and wet methods—are introduced. The dry methods for CNT film preparation include the membrane extraction method based on a vertical array of CNTs and the floating catalytic chemical vapor deposition method. Moreover, the wet methods predominantly discussed include vacuum filtration method, impregnation method, electrodeposition method, self-assembly method, and spraying method. Subsequently, the latest research advancements in assembly techniques, their performance and applications in various flexible electronics are discussed. This review primarily introduces the application of CNT films in the fields of flexible sensors, flexible energy devices, flexible transistors, and flexible display screens. The fundamentals of typical flexible sensors, such as strain sensors, pressure sensors, gas sensors, temperature sensors, and humidity sensors are presented. Besides, flexible lithium-ion batteries, flexible nanogenerators, and flexible thermoelectric devices based on CNT films are also investigated. Moreover, other flexible electronic devices, such as flexible transparent conductive film, flexible transistor, and flexible photodetector, based on CNT films are briefly described. Finally, advanced flexible electronics based on CNT films are summarized. The challenges and future prospects of these films are also discussed.
  • 加载中
    1. [1]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    2. [2]

      Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3, 270. doi: 10.1038/nnano.2008.83  doi: 10.1038/nnano.2008.83

    3. [3]

      Gelinck, G. H.; Huitema, H. E. A.; Van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; Van der Putten, J.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H.; et al. Nat. Mater. 2004, 3, 106. doi: 10.1038/nmat1061  doi: 10.1038/nmat1061

    4. [4]

      Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwoediauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. Nature 2013, 499, 458. doi: 10.1038/nature12314  doi: 10.1038/nature12314

    5. [5]

      Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Nat. Mater. 2010, 9, 859. doi: 10.1038/nmat2834  doi: 10.1038/nmat2834

    6. [6]

      Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Nature 2011, 475, 364. doi: 10.1038/nature10313  doi: 10.1038/nature10313

    7. [7]

      Wu, X. -L.; Wen, T.; Guo, H. -L.; Yang, S.; Wang, X.; Xu, A. -W. ACS Nano 2013, 7, 3589. doi: 10.1021/nn400566d  doi: 10.1021/nn400566d

    8. [8]

      Xu, Y.; Lin, Z.; Huang, X.; Wang, Y.; Huang, Y.; Duan, X. Adv. Mater. 2013, 25, 5779. doi: 10.1002/adma.201301928  doi: 10.1002/adma.201301928

    9. [9]

      Wang, X.; Liu, J. Micromachines 2016, 7, 206. doi: 10.3390/mi7120206  doi: 10.3390/mi7120206

    10. [10]

      Wang, S.; Xu, J.; Wang, W.; Wang, G. -J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S.; Feig, V. R.; Lopez, J.; et al. Nature 2018, 555, 83. doi: 10.1038/nature25494  doi: 10.1038/nature25494

    11. [11]

      Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nat. Mater. 2010, 9, 821. doi: 10.1038/nmat2835  doi: 10.1038/nmat2835

    12. [12]

      Wu, W.; Wen, X.; Wang, Z. L. Science 2013, 340, 952. doi: 10.1126/science.1234855  doi: 10.1126/science.1234855

    13. [13]

      Xu, Y.; Lin, Z.; Huang, X.; Liu, Y.; Huang, Y.; Duan, X. ACS Nano 2013, 7, 4042. doi: 10.1021/nn4000836  doi: 10.1021/nn4000836

    14. [14]

      Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S. H.; Kang, Z.; et al. Adv. Mater. 2013, 25, 2773. doi: 10.1002/adma.201204426  doi: 10.1002/adma.201204426

    15. [15]

      Sun, D. -M.; Liu, C.; Ren, W. -C.; Cheng, H. -M. Small 2013, 9, 1188. doi: 10.1002/smll.201203154  doi: 10.1002/smll.201203154

    16. [16]

      Bian, Z.; Song, J.; Webb, R. C.; Bonifas, A. P.; Rogers, J. A.; Huang, Y. RSC Adv. 2014, 4, 5694. doi: 10.1039/c3ra45277h  doi: 10.1039/c3ra45277h

    17. [17]

      Tortorich, R. P.; Choi, J. -W. Nanomaterials 2013, 3, 453. doi: 10.3390/nano3030453  doi: 10.3390/nano3030453

    18. [18]

      Xia, K. -L.; Jian, M. -Q.; Zhang, Y. -Y. Acta Phys. -Chim. Sin. 2016, 32, 2427.  doi: 10.3866/PKU.WHXB201607261

    19. [19]

      Zhou, Y.; Azumi, R. Sci. Technol. Adv. Mater. 2016, 17, 493. doi: 10.1080/14686996.2016.1214526  doi: 10.1080/14686996.2016.1214526

    20. [20]

      Brosseau, C. Surf. Coat. Technol. 2011, 206, 753. doi: 10.1016/j.surfcoat.2011.02.017  doi: 10.1016/j.surfcoat.2011.02.017

    21. [21]

      Chen, H.; Zeng, S.; Chen, M.; Zhang, Y.; Li, Q. Carbon 2015, 92, 271. doi: 10.1016/j.carbon.2015.04.010  doi: 10.1016/j.carbon.2015.04.010

    22. [22]

      Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Adv. Mater. 2016, 28, 4397. doi: 10.1002/adma.201504958  doi: 10.1002/adma.201504958

    23. [23]

      Luo, M.; Liu, Y.; Huang, W.; Qiao, W.; Zhou, Y.; Ye, Y.; Chen, L. -S. Micromachines 2017, 8, 12. doi: 10.3390/mi8010012  doi: 10.3390/mi8010012

    24. [24]

      Lin, Y. M.; Appenzeller, J.; Chen, Z. H.; Chen, Z. G.; Cheng, H. M.; Avouris, P. IEEE Electron Device Lett. 2005, 26, 823. doi: 10.1109/led.2005.857704  doi: 10.1109/led.2005.857704

    25. [25]

      Lin, Y. M.; Appenzeller, J.; Knoch, J.; Avouris, P. IEEE Trans. Nanotechnol. 2005, 4, 481. doi: 10.1109/tnano.2005.851427  doi: 10.1109/tnano.2005.851427

    26. [26]

      Qiu, C.; Zhang, Z.; Xiao, M.; Yang, Y.; Zhong, D.; Peng, L. -M. Science 2017, 355, 271. doi: 10.1126/science.aaj1628  doi: 10.1126/science.aaj1628

    27. [27]

      Li, C. Y.; Chou, T. W. Phys. Rev. B 2005, 71, 235414. doi: 10.1103/PhysRevB.71.235414  doi: 10.1103/PhysRevB.71.235414

    28. [28]

      Paillet, M.; Michel, T.; Meyer, J. C.; Popov, V. N.; Henrard, L.; Roth, S.; Sauvajol, J. L. Phys. Rev. Lett. 2006, 96, 257401. doi: 10.1103/PhysRevLett.96.257401  doi: 10.1103/PhysRevLett.96.257401

    29. [29]

      Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. Science 1999, 283, 1513. doi: 10.1126/science.283.5407.1513  doi: 10.1126/science.283.5407.1513

    30. [30]

      Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Nature 1996, 381, 678. doi: 10.1038/381678a0  doi: 10.1038/381678a0

    31. [31]

      Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84, 5552. doi: 10.1103/PhysRevLett.84.5552  doi: 10.1103/PhysRevLett.84.5552

    32. [32]

      Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637. doi: 10.1126/science.287.5453.637  doi: 10.1126/science.287.5453.637

    33. [33]

      Zhang, R.; Wen, Q.; Qian, W.; Su, D. S.; Zhang, Q.; Wei, F. Adv. Mater. 2011, 23, 3387. doi: 10.1002/adma.201100344  doi: 10.1002/adma.201100344

    34. [34]

      Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0  doi: 10.1038/354056a0

    35. [35]

      Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605. doi: 10.1038/363605a0  doi: 10.1038/363605a0

    36. [36]

      Ouyang, M.; Huang, J. L.; Cheung, C. L.; Lieber, C. M. Science 2001, 291, 97. doi: 10.1126/science.291.5501.97  doi: 10.1126/science.291.5501.97

    37. [37]

      Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Nature 1998, 391, 59. doi: 10.1038/34139  doi: 10.1038/34139

    38. [38]

      Zhang, R.; Zhang, Y.; Wei, F. Acc. Chem. Res. 2017, 50, 179. doi: 10.1021/acs.accounts.6b00430  doi: 10.1021/acs.accounts.6b00430

    39. [39]

      Gavillet, J.; Loiseau, A.; Ducastelle, F.; Thair, S.; Bernier, P.; Stephan, O.; Thibault, J.; Charlier, J. C. Carbon 2002, 40, 1649. doi: 10.1016/s0008-6223(02)00007-6  doi: 10.1016/s0008-6223(02)00007-6

    40. [40]

      Iijima, S.; Ichihashi, T. Nature 1993, 363, 603. doi: 10.1038/363603a0  doi: 10.1038/363603a0

    41. [41]

      Liu, C.; Cong, H. T.; Li, F.; Tan, P. H.; Cheng, H. M.; Lu, K.; Zhou, B. L. Carbon 1999, 37, 1865. doi: 10.1016/s0008-6223(99)00196-7  doi: 10.1016/s0008-6223(99)00196-7

    42. [42]

      Zhao, X.; Ohkohchi, M.; Wang, M.; Iijima, S.; Ichihashi, T.; Ando, Y. Carbon 1997, 35, 775. doi: 10.1016/s0008-6223(97)00033-x  doi: 10.1016/s0008-6223(97)00033-x

    43. [43]

      Fischer, J. E.; Dai, H.; Thess, A.; Lee, R.; Hanjani, N. M.; Dehaas, D. L.; Smalley, R. E. Phys. Rev. B 1997, 55, R4921. doi: 10.1103/PhysRevB.55.R4921  doi: 10.1103/PhysRevB.55.R4921

    44. [44]

      Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. E. J. Phys. Chem. 1995, 99, 10694. doi: 10.1021/j100027a002  doi: 10.1021/j100027a002

    45. [45]

      Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai, H. J. Nature 1998, 395, 878. doi: 10.1038/27632  doi: 10.1038/27632

    46. [46]

      Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; et al. Science 1996, 273, 483. doi: 10.1126/science.273.5274.483  doi: 10.1126/science.273.5274.483

    47. [47]

      He, M.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Jiang, H.; Zhu, Z.; Tian, Y.; Kauppinen, E. I.; et al. J. Am. Chem. Soc. 2010, 132, 13994. doi: 10.1021/ja106609y  doi: 10.1021/ja106609y

    48. [48]

      He, M.; Zhang, S.; Wu, Q.; Xue, H.; Xin, B.; Wang, D.; Zhang, J. Adv. Mater. 2018, e1800805. (in press) doi: 10.1002/adma.201800805  doi: 10.1002/adma.201800805

    49. [49]

      Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nature 2002, 419, 801. doi: 10.1038/419801a  doi: 10.1038/419801a

    50. [50]

      Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. ACS Nano 2009, 3, 2157. doi: 10.1021/nn9003988  doi: 10.1021/nn9003988

    51. [51]

      Zhang, Y. Y.; Stan, L.; Xu, P.; Wang, H. L.; Doorn, S. K.; Htoon, H.; Zhu, Y. T.; Jia, Q. X. Carbon 2009, 47, 3332. doi: 10.1016/j.carbon.2009.07.056  doi: 10.1016/j.carbon.2009.07.056

    52. [52]

      Xie, H. H.; Zhang, R. F.; Zhang, Y. Y.; Li, P.; Jin, Y. G.; Wei, F. Carbon 2013, 52, 535. doi: 10.1016/j.carbon.2012.10.006  doi: 10.1016/j.carbon.2012.10.006

    53. [53]

      Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. ACS Nano 2013, 7, 6156. doi: 10.1021/nn401995z  doi: 10.1021/nn401995z

    54. [54]

      Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Science 2005, 309, 1215. doi: 10.1126/science.1115311  doi: 10.1126/science.1115311

    55. [55]

      Liu, K.; Sun, Y.; Liu, P.; Wang, J.; Li, Q.; Fan, S.; Jiang, K. Nanotechnology 2009, 20, 335705. doi: 10.1088/0957-4484/20/33/335705  doi: 10.1088/0957-4484/20/33/335705

    56. [56]

      Jiang, K.; Wang, J.; Li, Q.; Liu, L.; Liu, C.; Fan, S. Adv. Mater. 2011, 23, 1154. doi: 10.1002/adma.201003989  doi: 10.1002/adma.201003989

    57. [57]

      Ma, W.; Song, L.; Yang, R.; Zhang, T.; Zhao, Y.; Sun, L.; Ren, Y.; Liu, D.; Liu, L.; Shen, J.; et al. Nano Lett. 2007, 7, 2307. doi: 10.1021/nl070915c  doi: 10.1021/nl070915c

    58. [58]

      Wang, B. -W.; Jiang, S.; Zhu, Q. -B.; Sun, Y.; Luan, J.; Hou, P. -X.; Qiu, S.; Li, Q. -W.; Liu, C.; Sun, D. -M.; et al. Adv. Mater. 2018, 30, 1802057. doi: 10.1002/adma.201802057  doi: 10.1002/adma.201802057

    59. [59]

      Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 2006, 6, 1880. doi: 10.1021/nl0608543  doi: 10.1021/nl0608543

    60. [60]

      Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; et al. Science 2004, 305, 1273. doi: 10.1126/science.1101243  doi: 10.1126/science.1101243

    61. [61]

      He, X.; Gao, W.; Xie, L.; Li, B.; Zhang, Q.; Lei, S.; Robinson, J. M.; Haroz, E. H.; Doorn, S. K.; Wang, W.; et al. Nat. Nanotechnol. 2016, 11, 633. doi: 10.1038/nnano.2016.44  doi: 10.1038/nnano.2016.44

    62. [62]

      Lima, M. D.; de Andrade, M. J.; Skakalova, V.; Nobre, F.; Bergmann, C. P.; Roth, S. Phys. Status Solidi-Rapid Res. Lett. 2007, 1, 165. doi: 10.1002/pssr.200701086  doi: 10.1002/pssr.200701086

    63. [63]

      Ng, M. H. A.; Hartadi, L. T.; Tan, H.; Poa, C. H. P. Nanotechnology 2008, 19, 205703. doi: 10.1088/0957-4484/19/20/205703  doi: 10.1088/0957-4484/19/20/205703

    64. [64]

      Chen, Z.; Yang, Y. L.; Wu, Z. Y.; Luo, G.; Xie, L. M.; Liu, Z. F.; Ma, S. J.; Guo, W. L. J. Phys. Chem. B 2005, 109, 5473. doi: 10.1021/jp045796t  doi: 10.1021/jp045796t

    65. [65]

      Pei, S.; Du, J.; Zeng, Y.; Liu, C.; Cheng, H. -M. Nanotechnology 2009, 20, 235707. doi: 10.1088/0957-4484/20/23/235707  doi: 10.1088/0957-4484/20/23/235707

    66. [66]

      Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. ACS Nano 2008, 2, 2445. doi: 10.1021/nn800708w  doi: 10.1021/nn800708w

    67. [67]

      Jia, L.; Zhang, Y.; Li, J.; You, C.; Xie, E. J. Appl. Phys. 2008, 104, 074318. doi: 10.1063/1.2996033  doi: 10.1063/1.2996033

    68. [68]

      Park, H.; Afzali, A.; Han, S. -J.; Tulevski, G. S.; Franklin, A. D.; Tersoff, J.; Hannon, J. B.; Haensch, W. Nat. Nanotechnol. 2012, 7, 787. doi: 10.1038/nnano.2012.189  doi: 10.1038/nnano.2012.189

    69. [69]

      Cao, Q.; Han, S. -J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Nat. Nanotechnol. 2013, 8, 180. doi: 10.1038/nnano.2012.257  doi: 10.1038/nnano.2012.257

    70. [70]

      Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Langmuir 2014, 30, 3460. doi: 10.1021/la500162x  doi: 10.1021/la500162x

    71. [71]

      Meitl, M. A.; Zhou, Y. X.; Gaur, A.; Jeon, S.; Usrey, M. L.; Strano, M. S.; Rogers, J. A. Nano Lett. 2004, 4, 1643. doi: 10.1021/nl0491935  doi: 10.1021/nl0491935

    72. [72]

      Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; GrUner, G. Nano Lett. 2005, 5, 757. doi: 10.1021/nl0505254o  doi: 10.1021/nl0505254o

    73. [73]

      Lee, Y. D.; Lee, K. -S.; Lee, Y. -H.; Ju, B. -K. Appl. Surf. Sci. 2007, 254, 513. doi: 10.1016/j.apsusc.2007.06.042  doi: 10.1016/j.apsusc.2007.06.042

    74. [74]

      Li, Z.; Kandel, H. R.; Dervishi, E.; Saini, V.; Biris, A. S.; Biris, A. R.; Lupu, D. Appl. Phys. Lett. 2007, 91, 053115. doi: 10.1063/1.2767215  doi: 10.1063/1.2767215

    75. [75]

      Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Adv. Mater. 2009, 21, 3210. doi: 10.1002/adma.200803551  doi: 10.1002/adma.200803551

    76. [76]

      Hopkins, A. R.; Straw, D. C.; Spurrell, K. C. Thin Solid Films 2011, 520, 1541. doi: 10.1016/j.tsf.2011.10.043  doi: 10.1016/j.tsf.2011.10.043

    77. [77]

      Carey, T.; Jones, C.; Le Moal, F.; Deganello, D.; Torrisi, F. ACS Appl. Mater. Interfaces 2018, 10, 19948. doi: 10.1021/acsami.8b02784  doi: 10.1021/acsami.8b02784

    78. [78]

      Kordas, K.; Mustonen, T.; Toth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.; Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. M. Small 2006, 2, 1021. doi: 10.1002/smll.200600061  doi: 10.1002/smll.200600061

    79. [79]

      Fan, Z. J.; Wei, T.; Luo, G. H.; Wei, F. J. Mater. Sci. 2005, 40, 5075. doi: 10.1007/s10853-005-1622-7  doi: 10.1007/s10853-005-1622-7

    80. [80]

      Preston, C.; Song, D.; Dai, J.; Tsinas, Z.; Bavier, J.; Cumings, J.; Ballarotto, V.; Hu, L. Nano Research 2015, 8, 2242. doi: 10.1007/s12274-015-0735-9  doi: 10.1007/s12274-015-0735-9

    81. [81]

      Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Adv. Funct. Mater. 2017, 27, 1606066 doi: 10.1002/adfm.201606066  doi: 10.1002/adfm.201606066

    82. [82]

      Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Adv. Mater. 2016, 28, 6640. doi: 10.1002/adma.201601572  doi: 10.1002/adma.201601572

    83. [83]

      Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. Science 2008, 321, 1468. doi: 10.1126/science.1160309  doi: 10.1126/science.1160309

    84. [84]

      Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Adv. Funct. Mater. 2017, 27, 1604795. doi: 10.1002/adfm.201604795  doi: 10.1002/adfm.201604795

    85. [85]

      Kang, I.; Schulz, M. J.; Kim, J. H.; Shanov, V.; Shi, D. Smart Mater. Struct. 2006, 15, 737. doi: 10.1088/0964-1726/15/3/009  doi: 10.1088/0964-1726/15/3/009

    86. [86]

      Thostenson, E. T.; Chou, T. -W. Adv. Mater. 2006, 18, 2837. doi: 10.1002/adma.200600977  doi: 10.1002/adma.200600977

    87. [87]

      Chun, K. -Y.; Oh, Y.; Rho, J.; Ahn, J. -H.; Kim, Y. -J.; Choi, H. R.; Baik, S. Nat. Nanotechnol. 2010, 5, 853. doi: 10.1038/nnano.2010.232  doi: 10.1038/nnano.2010.232

    88. [88]

      Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Nat. Nanotechnol. 2011, 6, 788. doi: 10.1038/nnano.2011.184  doi: 10.1038/nnano.2011.184

    89. [89]

      Zhao, H. B.; Zhang, Y. Y.; Bradford, P. D.; Zhou, Q. A.; Jia, Q. X.; Yuan, F. G.; Zhu, Y. T. Nanotechnology 2010, 21, 305502. doi: 10.1088/0957-4484/21/30/305502  doi: 10.1088/0957-4484/21/30/305502

    90. [90]

      Dharap, P.; Li, Z. L.; Nagarajaiah, S.; Barrera, E. V. Nanotechnology 2004, 15, 379. doi: 10.1088/0957-4484/15/3/026  doi: 10.1088/0957-4484/15/3/026

    91. [91]

      Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. Nat. Nanotechnol. 2011, 6, 296. doi: 10.1038/nnano.2011.36  doi: 10.1038/nnano.2011.36

    92. [92]

      Roh, E.; Hwang, B. -U.; Kim, D.; Kim, B. -Y.; Lee, N. -E. ACS Nano 2015, 9, 6252. doi: 10.1021/acsnano.5b01613  doi: 10.1021/acsnano.5b01613

    93. [93]

      Wang, C. Y.; Xia, K. L.; Zhang, M. C.; Jian, M. Q.; Zhang, Y. Y. ACS Appl. Mater. Interfaces 2017, 9, 39484. doi: 10.1021/acsami.7b13356  doi: 10.1021/acsami.7b13356

    94. [94]

      Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. Nano Research 2018, 11, 1124. doi: 10.1007/s12274-017-1731-z  doi: 10.1007/s12274-017-1731-z

    95. [95]

      Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H.; Bao, Z. Adv. Mater. 2014, 26, 7324. doi: 10.1002/adma.201402574  doi: 10.1002/adma.201402574

    96. [96]

      Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C.; Lee, Y.; et al. Science 2018, 360, 998. doi: 10.1126/science.aao0098  doi: 10.1126/science.aao0098

    97. [97]

      Jian, M.; Xia, K.; Wang, Q.; Yin, Z.; Wang, H.; Wang, C.; Xie, H.; Zhang, M.; Zhang, Y. Adv. Funct. Mater. 2017, 27, 1606066. doi: 10.1002/adfm.201606066  doi: 10.1002/adfm.201606066

    98. [98]

      Woo, C. -S.; Lim, C. -H.; Cho, C. -W.; Park, B.; Ju, H.; Min, D. -H.; Lee, C. -J.; Lee, S. -B. Microelectron. Eng. 2007, 84, 1610. doi: 10.1016/j.mee.2007.01.162  doi: 10.1016/j.mee.2007.01.162

    99. [99]

      Lin, Z. -D.; Young, S. -J.; Chang, S. -J. IEEE Sensors J. 2015, 15, 7017. doi: 10.1109/jsen.2015.2472968  doi: 10.1109/jsen.2015.2472968

    100. [100]

      Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Adv. Mater. 2016, 28, 930. doi: 10.1002/adma.201504659  doi: 10.1002/adma.201504659

    101. [101]

      Honda, W.; Harada, S.; Ishida, S.; Arie, T.; Akita, S.; Takei, K. Adv. Mater. 2015, 27, 4674. doi: 10.1002/adma.201502116  doi: 10.1002/adma.201502116

    102. [102]

      Feng, Y.; Cabezas, A. L.; Chen, Q.; Zheng, L. -R.; Zhang, Z. -B. IEEE Sensors J. 2012, 12, 2844. doi: 10.1109/jsen.2012.2202390  doi: 10.1109/jsen.2012.2202390

    103. [103]

      Rigoni, F.; Freddi, S.; Pagliara, S.; Drera, G.; Sangaletti, L.; Suisse, J. M.; Bouvet, M.; Malovichko, A. M.; Emelianov, A. V.; Bobrinetskiy, I. I. Nanotechnology 2017, 28, 255502. doi: 10.1088/1361-6528/aa6da7  doi: 10.1088/1361-6528/aa6da7

    104. [104]

      Tai, Y.; Lubineau, G. Small 2017, 13, 1603486. doi: 10.1002/smll.201603486  doi: 10.1002/smll.201603486

    105. [105]

      Zhao, H.; Zhang, T.; Qi, R.; Dai, J.; Liu, S.; Fei, T. ACS Appl. Mater. Interfaces 2017, 9, 28002. doi: 10.1021/acsami.7b05181  doi: 10.1021/acsami.7b05181

    106. [106]

      Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Nano Research 2018, 11, 2347. doi: 10.1007/s12274-017-1782-1  doi: 10.1007/s12274-017-1782-1

    107. [107]

      Chen, P. -C.; Shen, G.; Sukcharoenchoke, S.; Zhou, C. Appl. Phys. Lett. 2009, 94, 043133. doi: 10.1063/1.3069277  doi: 10.1063/1.3069277

    108. [108]

      Pan, S.; Lin, H.; Deng, J.; Chen, P.; Chen, X.; Yang, Z.; Peng, H. Adv. Energy Mater. 2015, 5, 1401438. doi: 10.1002/aenm.201401438  doi: 10.1002/aenm.201401438

    109. [109]

      Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Nano Lett. 2009, 9, 1872. doi: 10.1021/nl8038579  doi: 10.1021/nl8038579

    110. [110]

      Hu, S.; Rajamani, R.; Yu, X. Appl. Phys. Lett. 2012, 100, 104103. doi: 10.1063/1.3691948  doi: 10.1063/1.3691948

    111. [111]

      Xi, S.; Kang, Y.; Qu, S.; Han, S. Mater. Lett. 2016, 175, 126. doi: 10.1016/j.matlet.2016.03.143  doi: 10.1016/j.matlet.2016.03.143

    112. [112]

      Fang, X.; Shen, C.; Ge, M.; Rong, J.; Liu, Y.; Zhang, A.; Wei, F.; Zhou, C. Nano Energy 2015, 12, 43. doi: 10.1016/j.nanoen.2014.11.052  doi: 10.1016/j.nanoen.2014.11.052

    113. [113]

      Kang, C.; Cha, E.; Baskaran, R.; Choi, W. Nanotechnology 2016, 27, 105402. doi: 10.1088/0957-4484/27/10/105402  doi: 10.1088/0957-4484/27/10/105402

    114. [114]

      Sun, X.; Liu, Z.; Li, N.; Wu, X.; Nie, Y.; Pang, Z.; Yue, L.; Tang, H. Nano 2016, 11, 1650120. doi: 10.1142/s1793292016501204  doi: 10.1142/s1793292016501204

    115. [115]

      Kim, S.; Song, H.; Jeong, Y. Carbon 2017, 113, 371. doi: 10.1016/j.carbon.2016.11.019  doi: 10.1016/j.carbon.2016.11.019

    116. [116]

      Chew, S. Y.; Ng, S. H.; Wang, J.; Novak, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K. Carbon 2009, 47, 2976. doi: 10.1016/j.carbon.2009.06.045  doi: 10.1016/j.carbon.2009.06.045

    117. [117]

      Lee, S.; Song, H.; Hwang, J. Y.; Jeong, Y. Fib. Polym. 2017, 18, 2334. doi: 10.1007/s12221-017-7715-5  doi: 10.1007/s12221-017-7715-5

    118. [118]

      Cheng, J.; Ding, W.; Zi, Y.; Lu, Y.; Ji, L.; Liu, F.; Wu, C.; Wang, Z. L. Nat. Commun. 2018, 9, 3733. doi: 10.1038/s41467-018-06198-x  doi: 10.1038/s41467-018-06198-x

    119. [119]

      Khan, S. A.; Zhang, H. L.; Xie, Y.; Gao, M.; Shah, M. A.; Qadir, A.; Lin, Y. Adv. Eng. Mater. 2017, 19, 1600710. doi: 10.1002/adem.201600710  doi: 10.1002/adem.201600710

    120. [120]

      Wang, X.; Yang, B.; Liu, J.; Zhu, Y.; Yang, C.; He, Q. Sci. Rep. 2016, 6, 36409. doi: 10.1038/srep36409  doi: 10.1038/srep36409

    121. [121]

      Kim, S. L.; Choi, K.; Tazebay, A.; Yu, C. ACS Nano 2014, 8, 2377. doi: 10.1021/nn405893t  doi: 10.1021/nn405893t

    122. [122]

      Blackburn, J. L.; Ferguson, A. J.; Cho, C.; Grunlan, J. C. Adv. Mater. 2018, 30, 1704386. doi: 10.1002/adma.201704386  doi: 10.1002/adma.201704386

    123. [123]

      Zhou, W.; Fan, Q.; Zhang, Q.; Cai, L.; Li, K.; Gu, X.; Yang, F.; Zhang, N.; Wang, Y.; Liu, H.; Zhou, W.; Xie, S. Nat. Commun. 2017, 8, 14886. doi: 10.1038/ncomms14886  doi: 10.1038/ncomms14886

    124. [124]

      Zhang, Y. Y.; Sheehan, C. J.; Zhai, J. Y.; Zou, G. F.; Luo, H. M.; Xiong, J.; Zhu, Y. T.; Jia, Q. X. Adv. Mater. 2010, 22, 3027. doi: 10.1002/adma.200904426  doi: 10.1002/adma.200904426

    125. [125]

      Hecht, D. S.; Thomas, D.; Hu, L.; Ladous, C.; Lam, T.; Park, Y.; Irvin, G.; Drzaic, P. J. Soc. Inform. Display 2009, 17, 941. doi: 10.1889/jsid17.11.941  doi: 10.1889/jsid17.11.941

    126. [126]

      Feng, C.; Liu, K.; Wu, J. -S.; Liu, L.; Cheng, J. -S.; Zhang, Y.; Sun, Y.; Li, Q.; Fan, S.; Jiang, K. Adv. Funct. Mater. 2010, 20, 885. doi: 10.1002/adfm.200901960  doi: 10.1002/adfm.200901960

    127. [127]

      Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Science 1999, 283, 512. doi: 10.1126/science.283.5401.512  doi: 10.1126/science.283.5401.512

    128. [128]

      Yao, Z.; Kane, C. L.; Dekker, C. Phys. Rev. Lett. 2000, 84, 2941. doi: 10.1103/PhysRevLett.84.2941  doi: 10.1103/PhysRevLett.84.2941

    129. [129]

      Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66. doi: 10.1038/35051047  doi: 10.1038/35051047

    130. [130]

      Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, 2361. doi: 10.1126/science.1078727  doi: 10.1126/science.1078727

    131. [131]

      Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787. doi: 10.1126/science.1060928  doi: 10.1126/science.1060928

    132. [132]

      Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature 2002, 415, 617. doi: 10.1038/415617a  doi: 10.1038/415617a

    133. [133]

      Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J. Appl. Phys. Lett. 2002, 81, 3648. doi: 10.1063/1.1518810  doi: 10.1063/1.1518810

    134. [134]

      Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. H. Nano Lett. 2003, 3, 1067. doi: 10.1021/nl034313e  doi: 10.1021/nl034313e

    135. [135]

      Levitsky, I. A.; Euler, W. B. Appl. Phys. Lett. 2003, 83, 1857. doi: 10.1063/1.1606099  doi: 10.1063/1.1606099

    136. [136]

      Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087  doi: 10.1002/adma.200390087

    137. [137]

      Qiu, X. H.; Freitag, M.; Perebeinos, V.; Avouris, P. Nano Lett. 2005, 5, 749. doi: 10.1021/nl050227y  doi: 10.1021/nl050227y

    138. [138]

      Zhu, C.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A. C.; Pochorovski, I.; Yan, X.; To, J. W. F.; Oh, J. Y.; et al. Nat. Electron. 2018, 1, 183. doi: 10.1038/s41928-018-0041-0  doi: 10.1038/s41928-018-0041-0

    139. [139]

      Liu, Y.; Wei, N.; Zeng, Q.; Han, J.; Huang, H.; Zhong, D.; Wang, F.; Ding, L.; Xia, J.; Xu, H.; et al. Adv. Opt. Mater. 2016, 4, 238. doi: 10.1002/adom.201500529  doi: 10.1002/adom.201500529

    140. [140]

      Zeng, Q. S.; Wang, S.; Yang, L. J.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Peng, L. M.; Zhou, W. W.; Liu, J.; Zhou, W. Y.; et al. Opt. Mater. Express 2012, 2, 839. doi: 10.1364/Ome.2.000839  doi: 10.1364/Ome.2.000839

    141. [141]

      Suzuki, D.; Ochiai, Y.; Nakagawa, Y.; Kuwahara, Y.; Saito, T.; Kawano, Y. ACS Appl. Nano Mater. 2018, 1, 2469. doi: 10.1021/acsanm.8b00421  doi: 10.1021/acsanm.8b00421

  • 加载中
    1. [1]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    2. [2]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    3. [3]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    15. [15]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

Metrics
  • PDF Downloads(47)
  • Abstract views(1797)
  • HTML views(481)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return