Citation: SHAN Chunhui, BAI Ruopeng, LAN Yu. Theoretical Advances of Transition Metals Mediated C―H Bonds Cleavage[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 940-953. doi: 10.3866/PKU.WHXB201810052 shu

Theoretical Advances of Transition Metals Mediated C―H Bonds Cleavage

  • Corresponding author: SHAN Chunhui, chunhui.shan@cqu.edu.cn LAN Yu, lanyu@cqu.edu.cn
  • Received Date: 23 October 2018
    Revised Date: 17 November 2018
    Accepted Date: 21 November 2018
    Available Online: 27 September 2018

    Fund Project: Fundamental Research Funds for the Central Universities, China (Chongqing University) 2018CDPTCG0001/4The project was supported by the National Natural Science Foundation of China (21822303, 21772020), Fundamental Research Funds for the Central Universities, China (Chongqing University) (2018CDXZ0002, 2018CDPTCG0001/4) and Chongqing Postdoctoral Science Special Foundation, China (XmT2018085)The project was supported by the National Natural Science Foundation of China 21772020Chongqing Postdoctoral Science Special Foundation, China XmT2018085The project was supported by the National Natural Science Foundation of China 21822303Fundamental Research Funds for the Central Universities, China (Chongqing University) 2018CDXZ0002

  • Transition-metal-catalyzed C―H bond activation, which has been widely applied to construct new covalent bonds, has emerged as one of the most effective strategies in synthetic chemistry due to atom economy and simple procedure. In this review, we have summarized the recent reports on the theoretical mechanistic study of transition-metal-catalyzed C―H bond cleavage. Based on these comprehensive theoretical studies, we have systematically discussed the general modes of C―H bond activation, which involves oxidative addition, base-assisted deprotonation, σ-metathesis, Friedel-Crafts-type electrophilic aromatic substitution, α- or β-hydrogen elimination, and hydrogen atom abstraction. From a mechanistic point of view, C―H bond activation by oxidative addition generally involves a zero-valent transition metal catalyst with strong reducibility, which requires a low activation barrier. The concerted metalation-deprotonation (CMD)-type C―H bond cleavage often occurs via a six-membered cyclic transition state using transition metal carboxylate as the catalyst with a directing group, which is a common mechanism for transition metals with high oxidation states. Base-assisted internal electrophilic substitution (BIES)-type C―H bond activation is commonly performed in the presence of cationic transition metal catalysts, in which electron-rich arenes react preferentially compared to electron-deficient arenes. In some other cases, outer-sphere base-assisted deprotonation can also result in C―H activation, which is dependent on the strength of the base used. The stronger the base used, the lower the energy barrier, and thus, the easier it is to protonate. The σ-metathesis pathway, which could occur via a four-membered cyclic transition state, is often considered an alternative for concerted metalation-deprotonation. If the aromatic hydrocarbon is attacked by electrophiles, the C―H bond can be activated by Friedel-Crafts-type electrophilic aromatic substitution. Elimination of α- or β-hydrogen is also frequently proposed for transition-metal-catalyzed C―H functionalization. Hydrogen atom abstraction could achieve C―H bond activation via a free radical process. Moreover, the C―H bonds of hydrocarbons can be considered weak nucleophiles because the electronegativity of carbon is higher than that of hydrogen, and they could be converted to strong nucleophiles (C-M) in the presence of transition metal catalysts via the different pathways mentioned above. It enables further functionalization with electrophiles or nucleophiles to construct complex molecular skeletons. Summarizing the general modes of C―H bond activation will increase our understanding of the associated chemical mechanism and will pave the way for new synthetic strategies. This review aims to offer theoretical guidance for experimental studies and inspire new reaction design by summarizing the modes of transition-metal-catalyzed C―H bond activation.
  • 加载中
    1. [1]

      Ackermann, L. Chem. Rev. 2011, 111, 1315. doi: 10.1021/cr100412j  doi: 10.1021/cr100412j

    2. [2]

      Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. doi: 10.1039/c1cs15082k  doi: 10.1039/c1cs15082k

    3. [3]

      Jiang, Y. -Y.; Man, X.; Bi, S. Sci. China-Chem. 2016, 59, 1448. doi: 10.1007/s11426-016-0330-3  doi: 10.1007/s11426-016-0330-3

    4. [4]

      Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. doi: 10.1021/cr100379j  doi: 10.1021/cr100379j

    5. [5]

      Rao, Y.; Shan, G.; Yang, X. Sci. China-Chem. 2014, 57, 930. doi: 10.1007/s11426-014-5130-y  doi: 10.1007/s11426-014-5130-y

    6. [6]

      Shan, C.; Zhu, L.; Qu, L. B.; Bai, R.; Lan, Y. Chem. Soc. Rev. 2018, 47, 7552. doi: 10.1039/c8cs00036k  doi: 10.1039/c8cs00036k

    7. [7]

      Yu, J. L.; Zhang, S. Q.; Hong, X. J. Am. Chem.Soc. 2017, 139, 7224. doi: 10.1021/jacs.7b00714  doi: 10.1021/jacs.7b00714

    8. [8]

      Yuan, C.; Zhu, L.; Chen, C.; Chen, X.; Yang, Y.; Lan, Y.; Zhao, Y. Nat. Commun. 2018, 9, 1189. doi: 10.1038/s41467-018-03341-6  doi: 10.1038/s41467-018-03341-6

    9. [9]

      Yuan, C.; Zhu, L.; Zeng, R.; Lan, Y.; Zhao, Y. Angew. Chem. Int. Ed. 2018, 57, 1277. doi: 10.1002/anie.201711221  doi: 10.1002/anie.201711221

    10. [10]

      Zhang, L.; Zhu, L.; Zhang, Y.; Yang, Y.; Wu, Y.; Ma, W.; Lan, Y.; You, J. ACS Catal. 2018, 8, 8324. doi: 10.1021/acscatal.8b02816  doi: 10.1021/acscatal.8b02816

    11. [11]

      Ackermann, L. Acc. Chem. Res. 2014, 47, 281. doi: 10.1021/ar3002798  doi: 10.1021/ar3002798

    12. [12]

      Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. doi: 10.1021/cr900005n  doi: 10.1021/cr900005n

    13. [13]

      Li, Y.; Liu, S.; Qi, Z.; Qi, X.; Li, X.; Lan, Y. Chem. -Eur. J. 2015, 21, 10131. doi: 10.1002/chem.201500290  doi: 10.1002/chem.201500290

    14. [14]

      Qin, X.; Li, X.; Huang, Q.; Liu, H.; Wu, D.; Guo, Q.; Lan, J.; Wang, R.; You, J. Angew. Chem. Int. Ed. 2015, 54, 7167. doi: 10.1002/anie.201501982  doi: 10.1002/anie.201501982

    15. [15]

      Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. doi: 10.1021/acs.accounts.5b00020  doi: 10.1021/acs.accounts.5b00020

    16. [16]

      Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007. doi: 10.1021/acs.accounts.5b00077  doi: 10.1021/acs.accounts.5b00077

    17. [17]

      Yu, S.; Li, Y.; Kong, L.; Zhou, X.; Tang, G.; Lan, Y.; Li, X. ACS Catal. 2016, 6, 7744. doi: 10.1021/acscatal.6b02668  doi: 10.1021/acscatal.6b02668

    18. [18]

      Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015, 137, 1623. doi: 10.1021/ja511796h  doi: 10.1021/ja511796h

    19. [19]

      Arroniz, C.; Denis, J. G.; Ironmonger, A.; Rassias, G.; Larrosa, I. Chem. Sci. 2014, 5, 3509. doi: 10.1039/c4sc01215a  doi: 10.1039/c4sc01215a

    20. [20]

      Arroniz, C.; Ironmonger, A.; Rassias, G.; Larrosa, I. Org. Lett. 2013, 15, 910. doi: 10.1021/ol400065j  doi: 10.1021/ol400065j

    21. [21]

      Chiong, H. A.; Pham, Q. N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879. doi: 10.1021/ja071845e  doi: 10.1021/ja071845e

    22. [22]

      Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem. Res. 2012, 45, 788. doi: 10.1021/ar200185g  doi: 10.1021/ar200185g

    23. [23]

      Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. Q. J. Am. Chem. Soc. 2007, 129, 3510. doi: 10.1021/ja0701614  doi: 10.1021/ja0701614

    24. [24]

      He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Chem. Rev. 2017, 117, 8754. doi: 10.1021/acs.chemrev.6b00622  doi: 10.1021/acs.chemrev.6b00622

    25. [25]

      Wang, D. H.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130, 17676. doi: 10.1021/ja806681z  doi: 10.1021/ja806681z

    26. [26]

      Zhang, H.; Wang, H.-Y.; Luo, Y.; Chen, C.; Cao, Y.; Chen, P.; Guo, Y. -L.; Lan, Y.; Liu, G. ACS Catal. 2018, 8, 2173. doi: 10.1021/acscatal.7b03220  doi: 10.1021/acscatal.7b03220

    27. [27]

      Zhu, C.; Zhang, Y.; Kan, J.; Zhao, H.; Su, W. Org. Lett. 2015, 17, 3418. doi: 10.1021/acs.orglett.5b01398  doi: 10.1021/acs.orglett.5b01398

    28. [28]

      Shi, R.; Lu, L.; Xie, H.; Yan, J.; Xu, T.; Zhang, H.; Qi, X.; Lan, Y.; Lei, A. Chem. Commun. 2016, 52, 13307. doi: 10.1039/c6cc06358f  doi: 10.1039/c6cc06358f

    29. [29]

      Song, L.; Zhu, L.; Zhang, Z.; Ye, J. H.; Yan, S. S.; Han, J. L.; Yin, Z. B.; Lan, Y.; Yu, D. G. Org. Lett. 2018, 20, 3776. doi: 10.1021/acs.orglett.8b01363  doi: 10.1021/acs.orglett.8b01363

    30. [30]

      Zhu, R. -Y.; Farmer, M. E.; Chen, Y. -Q.; Yu, J. -Q. Angew. Chem. Int. Ed. 2016, 55, 10578. doi: 10.1002/anie.201600791  doi: 10.1002/anie.201600791

    31. [31]

      Musaev, D. G.; Figg, T. M.; Kaledin, A. L. Chem. Soc. Rev. 2014, 43, 5009. doi: 10.1039/c3cs60447k  doi: 10.1039/c3cs60447k

    32. [32]

      Xie, H.; Fan, T.; Lei, Q.; Fang, W. Sci. Chin. Chem. 2016, 59, 1432. doi: 10.1007/s11426-016-0018-2  doi: 10.1007/s11426-016-0018-2

    33. [33]

      Xie, H.; Zhang, H.; Lin, Z. New J. Chem. 2013, 37, 2856. doi: 10.1039/c3nj00531c  doi: 10.1039/c3nj00531c

    34. [34]

      Liu, D.; Li, Y.; Qi, X.; Liu, C.; Lan, Y.; Lei, A. Org. Lett. 2015, 17, 998. doi: 10.1021/acs.orglett.5b00104  doi: 10.1021/acs.orglett.5b00104

    35. [35]

      Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 898. doi: 10.1021/ja411715v  doi: 10.1021/ja411715v

    36. [36]

      Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715. doi: 10.1021/jacs.6b04789  doi: 10.1021/jacs.6b04789

    37. [37]

      Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 169. doi: 10.1021/ja210249h  doi: 10.1021/ja210249h

    38. [38]

      Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet, J.; Yamaguchi, J.; Itami, K. Chem. -Eur. J. 2011, 17, 10113. doi: 10.1002/chem.201101091  doi: 10.1002/chem.201101091

    39. [39]

      Yokota, A.; Aihara, Y.; Chatani, N. J. Org. Chem. 2014, 79, 11922. doi: 10.1021/jo501697n  doi: 10.1021/jo501697n

    40. [40]

      Liu, R. R.; Zhu, L.; Hu, J. P.; Lu, C. J.; Gao, J. R.; Lan, Y.; Jia, Y. X. Chem. Commun. 2017, 53, 5890. doi: 10.1039/c7cc01015j  doi: 10.1039/c7cc01015j

    41. [41]

      Zeng, Z.; Zhang, T.; Yue, X.; Zhang, H.; Bai, R.; Lan, Y. Sci. Sin. Chim. 2018, 48, 736. doi: 10.1360/N032018-00105  doi: 10.1360/N032018-00105

    42. [42]

      Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529. doi: 10.1038/366529a0  doi: 10.1038/366529a0

    43. [43]

      Ackermann, L. Chem. Commun. 2010, 46, 4866. doi: 10.1039/c0cc00778a  doi: 10.1039/c0cc00778a

    44. [44]

      Ackermann, L.; Hofmann, N.; Vicente, R. Org. Lett. 2011, 13, 1875. doi: 10.1021/ol200366n  doi: 10.1021/ol200366n

    45. [45]

      Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. doi: 10.1021/ol800773x  doi: 10.1021/ol800773x

    46. [46]

      Fumagalli, F.; Warratz, S.; Zhang, S. K.; Rogge, T.; Zhu, C.; Stuckl, A. C.; Ackermann, L. Chem. -Eur. J. 2018, 24, 3984. doi: 10.1002/chem.201800530  doi: 10.1002/chem.201800530

    47. [47]

      Liu, W.; Ackermann, L. Org. Lett. 2013, 15, 3484. doi: 10.1021/ol401535k  doi: 10.1021/ol401535k

    48. [48]

      Warratz, S.; Burns, D. J.; Zhu, C.; Korvorapun, K.; Rogge, T.; Scholz, J.; Jooss, C.; Gelman, D.; Ackermann, L. Angew. Chem. Int. Ed. 2017, 56, 1557. doi: 10.1002/anie.201609014  doi: 10.1002/anie.201609014

    49. [49]

      Ferrer Flegeau, E.; Bruneau, C.; Dixneuf, P. H.; Jutand, A. J. Am. Chem. Soc. 2011, 133, 10161. doi: 10.1021/ja201462n  doi: 10.1021/ja201462n

    50. [50]

      Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. doi: 10.1021/ja710276x  doi: 10.1021/ja710276x

    51. [51]

      Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem. Soc., Dalton Trans. 1985, 2629. doi: 10.1039/dt9850002629  doi: 10.1039/dt9850002629

    52. [52]

      Kurzeev, S. A.; Kazankov, G. M.; Ryabov, A. D. Inorg. Chim. Acta 2002, 340, 192. doi: 10.1016/s0020-1693[02] 01148-9  doi: 10.1016/s0020-1693[02]01148-9

    53. [53]

      Oxgaard, J.; Tenn, W. J.; Nielsen, R. J.; Periana, R. A.; Goddard, W. A. Organometallics 2007, 26, 1565. doi: 10.1021/om061189b  doi: 10.1021/om061189b

    54. [54]

      Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749. doi: 10.1021/cr900315k  doi: 10.1021/cr900315k

    55. [55]

      Wenz, K. M.; Liu, P.; Houk, K. N. Organometallics 2017, 36, 3613. doi: 10.1021/acs.organomet.7b00531  doi: 10.1021/acs.organomet.7b00531

    56. [56]

      Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem. Int. Ed. 2014, 53, 9817. doi: 10.1002/anie.201404946  doi: 10.1002/anie.201404946

    57. [57]

      Shi, F. Q. Org. Lett. 2011, 13, 736. doi: 10.1021/ol102974k  doi: 10.1021/ol102974k

    58. [58]

      Cho, K. B.; Kang, H.; Woo, J.; Park, Y. J.; Seo, M. S.; Cho, J.; Nam, W. Inorg. Chem. 2014, 53, 645. doi: 10.1021/ic402831f  doi: 10.1021/ic402831f

    59. [59]

      Sun, X.; Sun, X.; Geng, C.; Zhao, H.; Li, J. J. Phys. Chem. A 2014, 118, 7146. doi: 10.1021/jp505662x  doi: 10.1021/jp505662x

    60. [60]

      Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2003, 125, 16114. doi: 10.1021/ja0302937  doi: 10.1021/ja0302937

    61. [61]

      Zhu, L.; Qi, X.; Li, Y.; Duan, M.; Zou, L.; Bai, R.; Lan, Y. Organometallics 2017, 36, 2107. doi: 10.1021/acs.organomet.7b00151  doi: 10.1021/acs.organomet.7b00151

    62. [62]

      Murphy, S. K.; Park, J. W.; Cruz, F. A.; Dong, V. M. Science 2015, 347, 56. doi: 10.1126/science.1261232  doi: 10.1126/science.1261232

    63. [63]

      Luo, X.; Bai, R.; Liu, S.; Shan, C.; Chen, C.; Lan, Y. J. Org. Chem. 2016, 81, 2320. doi: 10.1021/acs.joc.5b02828  doi: 10.1021/acs.joc.5b02828

    64. [64]

      Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848. doi: 10.1021/ja802533u  doi: 10.1021/ja802533u

    65. [65]

      Wang, Q.; Li, Y.; Qi, Z.; Xie, F.; Lan, Y.; Li, X. ACS Catal. 2016, 6, 1971. doi: 10.1021/acscatal.5b02297  doi: 10.1021/acscatal.5b02297

    66. [66]

      Yu, S.; Tang, G.; Li, Y.; Zhou, X.; Lan, Y.; Li, X. Angew. Chem. Int. Ed. 2016, 55, 8696. doi: 10.1002/anie.201602224  doi: 10.1002/anie.201602224

    67. [67]

      Dateer, R. B.; Chang, S. J. Am. Chem. Soc. 2015, 137, 4908. doi: 10.1021/jacs.5b01065  doi: 10.1021/jacs.5b01065

    68. [68]

      Li, Y.; Shan, C.; Yang, Y. F.; Shi, F.; Qi, X.; Houk, K. N.; Lan, Y. J. Phys. Chem. A 2017, 121, 4496. doi: 10.1021/acs.jpca.7b01020  doi: 10.1021/acs.jpca.7b01020

    69. [69]

      Liu, S.; Qi, X.; Qu, L. -B.; Bai, R.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645. doi: 10.1039/c7cy02367g  doi: 10.1039/c7cy02367g

    70. [70]

      Luo, Y.; Liu, S.; Xu, D.; Qu, L. -B.; Luo, X.; Bai, R.; Lan, Y. J. Organomet. Chem. 2018, 864, 148. doi: 10.1016/j.jorganchem.2018.03.016  doi: 10.1016/j.jorganchem.2018.03.016

    71. [71]

      Tan, G.; Zhu, L.; Liao, X.; Lan, Y.; You, J. J. Am. Chem. Soc. 2017, 139, 15724. doi: 10.1021/jacs.7b07242  doi: 10.1021/jacs.7b07242

    72. [72]

      Yang, X.; Liu, S.; Yu, S.; Kong, L.; Lan, Y.; Li, X. Org. Lett. 2018, 20, 2698. doi: 10.1021/acs.orglett.8b00906  doi: 10.1021/acs.orglett.8b00906

    73. [73]

      Yin, J.; Zhou, F.; Zhu, L.; Yang, M.; Lan, Y.; You, J. Chem. Sci. 2018, 9, 5488. doi: 10.1039/c8sc01963k  doi: 10.1039/c8sc01963k

    74. [74]

      Zhang, T.; Qi, X.; Liu, S.; Bai, R.; Liu, C.; Lan, Y. Chem. -Eur. J. 2017, 23, 2690. doi: 10.1002/chem.201605188  doi: 10.1002/chem.201605188

    75. [75]

      Qi, X.; Li, Y.; Bai, R.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799. doi: 10.1021/acs.accounts.7b00400  doi: 10.1021/acs.accounts.7b00400

    76. [76]

      Gao, B.; Liu, S.; Lan, Y.; Huang, H. Organometallics 2016, 35, 1480. doi: 10.1021/acs.organomet.6b00072  doi: 10.1021/acs.organomet.6b00072

    77. [77]

      Shan, C.; Luo, X.; Qi, X.; Liu, S.; Li, Y.; Lan, Y. Organometallics 2016, 35, 1440. doi: 10.1021/acs.organomet.6b00064  doi: 10.1021/acs.organomet.6b00064

    78. [78]

      Zhou, X.; Luo, Y.; Kong, L.; Xu, Y.; Zheng, G.; Lan, Y.; Li, X. ACS Catal. 2017, 7, 7296. doi: 10.1021/acscatal.7b02248  doi: 10.1021/acscatal.7b02248

    79. [79]

      Li, Y.; Zou, L.; Bai, R.; Lan, Y. Org. Chem. Front. 2018, 5, 615. doi: 10.1039/c7qo00850c  doi: 10.1039/c7qo00850c

    80. [80]

      Zell, D.; Bursch, M.; Muller, V.; Grimme, S.; Ackermann, L. Angew. Chem. Int. Ed. 2017, 56, 10378. doi: 10.1002/anie.201704196  doi: 10.1002/anie.201704196

    81. [81]

      Bu, Q.; Rogge, T.; Kotek, V.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 765. doi: 10.1002/anie.201711108  doi: 10.1002/anie.201711108

    82. [82]

      Yue, X.; Qi, X.; Bai, R.; Lei, A.; Lan, Y. Chem. -Eur. J. 2017, 23, 6419. doi: 10.1002/chem.201700733  doi: 10.1002/chem.201700733

    83. [83]

      Lin, Y.; Zhu, L.; Lan, Y.; Rao, Y. Chem. -Eur. J. 2015, 21, 14937. doi: 10.1002/chem.201502140  doi: 10.1002/chem.201502140

    84. [84]

      Ahmad, K.; Khan, B. A.; Roy, S. K.; Zai-ul, A.; Mahmood, R.; Khan, J.; Ashraf, H. Comput. Theor. Chem. 2018, 1130, 140. doi: 10.1016/j.comptc.2018.03.025  doi: 10.1016/j.comptc.2018.03.025

    85. [85]

      Clot, E.; Chen, J.; Lee, D. H.; Sung, S. Y.; Appelhans, L. N.; Faller, J. W.; Crabtree, R. H.; Eisenstein, O. J. Am. Chem. Soc. 2004, 126, 8795. doi: 10.1021/ja048473j  doi: 10.1021/ja048473j

    86. [86]

      Chen, Z. M.; Hilton, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 11461. doi: 10.1021/jacs.6b06994  doi: 10.1021/jacs.6b06994

    87. [87]

      Werner, E. W.; Mei, T. S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455. doi: 10.1126/science.1229208  doi: 10.1126/science.1229208

    88. [88]

      Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P. O.; Wu, Y. D.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc. 2014, 136, 1960. doi: 10.1021/ja4109616  doi: 10.1021/ja4109616

    89. [89]

      Limberg, C. Angew. Chem. Int. Ed. 2003, 42, 5932. doi: 10.1002/anie.200300578  doi: 10.1002/anie.200300578

    90. [90]

      Che, C. M.; Lo, V. K.; Zhou, C. Y.; Huang, J. S. Chem. Soc. Rev. 2011, 40, 1950. doi: 10.1039/c0cs00142b  doi: 10.1039/c0cs00142b

    91. [91]

      Zhang, L.; Liu, Y.; Deng, L. J. Am. Chem. Soc. 2014, 136, 15525. doi: 10.1021/ja509731z  doi: 10.1021/ja509731z

    92. [92]

      Hu, L.; Chen, H. ACS Catal. 2016, 7, 285. doi: 10.1021/acscatal.6b02694  doi: 10.1021/acscatal.6b02694

    93. [93]

      Maurice, D.; Head-Gordon, M. Mol. Phys. 1999, 96, 1533. doi: 10.1080/00268979909483096  doi: 10.1080/00268979909483096

    94. [94]

      Head-Gordon, M.; Rico, R. J.; Oumi, M.; Lee, T. J. Chem. Phys. Lett. 1994, 219, 21. doi: 10.1016/0009-2614[94] 00070-0  doi: 10.1016/0009-2614[94]00070-0

    95. [95]

      Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164  doi: 10.1063/1.443164

    96. [96]

      Krishnan, R.; Pople, J. A. Int. J.Quantum Chem. 1978, 14, 91. doi: 10.1002/qua.560140109  doi: 10.1002/qua.560140109

    97. [97]

      Van Voorhis, T.; Head-Gordon, M. J. Chem. Phys. 2001, 115, 5033. doi: 10.1063/1.1390516  doi: 10.1063/1.1390516

    98. [98]

      Meyer, H. D.; Manthe, U.; Cederbaum, L. S. Chem. Phys. Lett. 1990, 165, 73. doi: 10.1016/0009-2614[90] 87014-i  doi: 10.1016/0009-2614[90]87014-i

    99. [99]

      M ller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. doi: 10.1103/PhysRev.46.618  doi: 10.1103/PhysRev.46.618

    100. [100]

      Grimme, S. J. Comput. Chem. 2004, 25, 1463. doi: 10.1002/jcc.20078  doi: 10.1002/jcc.20078

    101. [101]

      Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364. doi: 10.1021/ct0502763  doi: 10.1021/ct0502763

    102. [102]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913  doi: 10.1063/1.464913

    103. [103]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785  doi: 10.1103/PhysRevB.37.785

    104. [104]

      Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2011, 7, 291. doi: 10.1021/ct100466k  doi: 10.1021/ct100466k

    105. [105]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344  doi: 10.1063/1.3382344

    106. [106]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 119, 525. doi: 10.1007/s00214-007-0401-8  doi: 10.1007/s00214-007-0401-8

    107. [107]

      Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 3, 117. doi: 10.1021/jz201525m  doi: 10.1021/jz201525m

    108. [108]

      Peverati, R.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 2310. doi: 10.1021/ct3002656  doi: 10.1021/ct3002656

    109. [109]

      Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 5656. doi: 10.1021/jp050536c  doi: 10.1021/jp050536c

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    8. [8]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    18. [18]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(21)
  • Abstract views(1045)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return