Citation: CHEN Shihao, WANG Ming, JIANG Xuefeng. C-H Functionalization Strategies for the Construction of Thioethers[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 954-967. doi: 10.3866/PKU.WHXB201810044 shu

C-H Functionalization Strategies for the Construction of Thioethers

  • Corresponding author: JIANG Xuefeng, xfjiang@chem.ecnu.edu.cn
  • Received Date: 22 October 2018
    Revised Date: 26 November 2018
    Accepted Date: 26 November 2018
    Available Online: 29 September 2018

    Fund Project: National Natural Science Foundation of China 21502054the National Key Research and Development Program of China 2017YFD0200500National Natural Science Foundation of China 21472050National Natural Science Foundation of China 21722202S&TCSM of Shanghai, China 18JC1415600National Natural Science Foundation of China 21672069The project was supported by the National Key Research and Development Program of China (2017YFD0200500), National Natural Science Foundation of China (21722202, 21672069, 21472050, 21502054), S&TCSM of Shanghai, China (18JC1415600), and National Program for Support of Top-notch Young Professionals, China

  • Thioesters, which are essential sulfur-containing organic molecules, are indispensable in natural products, pharmaceuticals, and organic light-emitting materials. Efficient synthesis of thioethers has received considerable attention due to the widespread applications of these compounds, and many fundamental approaches for C-S bond formation have been proposed. However, most of them construct C-S bonds by employing organic halides/organic boronic acid. These methodologies generally suffer from a pre-functionalized starting material. Recently, selective C-H functionalization emerged as a powerful tool for the synthesis of C-N, C-O, C-C, and C-halogen bonds. Nevertheless, C-S bond formation via C-H functionalization has only recently been given more importance because organosulfur compounds are believed to inactivate catalysts. In contrast to traditional cross-coupling reactions, direct functionalization of C-H bonds for the synthesis of thioethers can shorten the reaction steps and minimize the amount of waste formed. In this review, which is divided into several parts, we describe C-H functionalization strategies for the construction of thioethers. In Part Ⅰ, we introduce the importance and widespread applications of thioethers in daily life. For example, Lissoclibadin 6 is a polysulfur aromatic alkaloid that shows antimicrobial activity. Seroquel is an antipsychotic medicine. It is used to treat bipolar disorder and schizophrenia in adults, and children who are at least 10 years old. Tazarotene is approved for the treatment of psoriasis, acne, and sun-damaged skin. Furthermore, a comparison between conventional synthesis methods and C-H thiolation is discussed. In Part Ⅱ, we introduce copper-catalyzed or copper-mediated C-H thiolation. Along with the direct functionalization of sp2 and sp C-H for the synthesis of aryl sulfides, some significant and challenging thiolations of sp3 C-H are included. In addition to copper, palladium is an excellent catalyst for C-H functionalization. In Part Ⅲ, we elucidate palladium-catalyzed C-H thiolation and discuss many proposed mechanisms. Nickel, which is a first-flow, low-cost, and earth-abundant metal catalyst, has increasingly gained attention. In contrast to copper and palladium, despite its late start, several remarkable reports on nickel-catalyzed C-H thiolation were published by several groups. Rhodium plays a key role in selective C-H functionalization. Some published results proved the capacity of rhodium catalysts to promote C-S construction via C-H functionalization. In Part Ⅳ, we introduce rhodium-catalyzed C-H thiolation. In recent years, metal-free C-H functionalization has been quite attractive. In Part Ⅴ, some C-S construction strategies via metal-free C-H functionalization are presented. In the last part, the conclusion discusses the limitations and possible development directions of these advances in the construction of thioethers.
  • 加载中
    1. [1]

      Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832. doi: 10.1021/jm401375q  doi: 10.1021/jm401375q

    2. [2]

      Smith, B. R.; Eastman, C. M.; Njardarson, J. T. J. Med. Chem. 2014, 57, 9764. doi: 10.1021/jm501105n  doi: 10.1021/jm501105n

    3. [3]

      Feng, M.; Tang, B.; Liang, S.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. doi: 10.2174/1568026615666150915111741  doi: 10.2174/1568026615666150915111741

    4. [4]

      Xiong, H. -Y.; Pannecoucke, X.; Besset, T. Chem. -Eur. J. 2016, 22, 16734. doi: 10.1002/chem.201603438  doi: 10.1002/chem.201603438

    5. [5]

      Mishra, A.; Ma, C. Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141. doi: 10.1021/cr8004229  doi: 10.1021/cr8004229

    6. [6]

      Wang, M.; Fan, Q.; Jiang, X. Org. Lett. 2016, 18, 5756. doi: 10.1021/acs.orglett.6b03078  doi: 10.1021/acs.orglett.6b03078

    7. [7]

      Borthwick, A. D. Chem. Rev. 2012, 112, 3641. doi: 10.1021/cr200398y  doi: 10.1021/cr200398y

    8. [8]

      Nicolaou, K. C.; Hale, C. R. H.; Nilewski, C.; Ioannidou, H. A. Chem. Soc. Rev. 2012, 41, 5185. doi: 10.1039/C2CS35116A  doi: 10.1039/C2CS35116A

    9. [9]

      Davison, E. K.; Sperry, J. J. Nat. Prod. 2017, 80, 3060. doi: 10.1021/acs.jnatprod.7b00575  doi: 10.1021/acs.jnatprod.7b00575

    10. [10]

      Liu, H.; Jiang, X. Chem. Asian J. 2013, 8, 2546. doi: 10.1002/asia.201300636  doi: 10.1002/asia.201300636

    11. [11]

      Nair, D. P.; Podgorski, M.; Shunsuke, C.; Gong, T.; Xi, W. X.; Fenoli, C. R.; Bowman, C. N. Chem. Mater. 2014, 26, 724. doi: 10.1021/cm402180t  doi: 10.1021/cm402180t

    12. [12]

      Bürchstümmer, H.; Weissenstein, A.; Bilalas. D.; Würthner, F. J. Org. Chem. 2011, 76, 2426. doi: 10.1021/jo2003117  doi: 10.1021/jo2003117

    13. [13]

      Takimiya, K.; Osaka, I.; Mori, T.; Nakano, M. Acc. Chem. Res. 2014, 47, 1493. doi: 10.1021/ar400282g  doi: 10.1021/ar400282g

    14. [14]

      Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod. 2007, 70, 439. doi: 10.1021/np060593c  doi: 10.1021/np060593c

    15. [15]

      Oda, T.; Fujiwara, T.; Liu, H.; Ukai, K.; Mangindaan, R. E. P.; Mochizuki, M.; Namikoshi, M. Marine Drugs 2006, 4, 15. doi: 10.3390/md401015  doi: 10.3390/md401015

    16. [16]

      Thase, M. E.; Macfadden, W.; Weisler, R. H.; Chang, W.; Paulsson, B.; Khan, A.; Calabrese, J. R. J. Clin. Psychopharmacol. 2006, 26, 600. doi: 10.1097/01.jcp.0000248603.76231.b7  doi: 10.1097/01.jcp.0000248603.76231.b7

    17. [17]

      Chen, S.; Wang, M.; Jiang, X. Chin. J. Chem. 2018, 36, 921. doi: 10.1002/cjoc.201800242  doi: 10.1002/cjoc.201800242

    18. [18]

      Lin, D. Y.; Zhang, S. -Z.; Block, E.; Katz, L. C. Nature 2005, 434, 470. doi: 10.1038/nature03414  doi: 10.1038/nature03414

    19. [19]

      Kondo, T.; Mitsudo, T. -A. Chem. Rev. 2000, 100, 3205. doi: 10.1021/cr9902749  doi: 10.1021/cr9902749

    20. [20]

      Beletskaya, I. P.; Anikov, V. P. Chem. Rev. 2011, 111, 1596. doi: 10.1021/cr100347k  doi: 10.1021/cr100347k

    21. [21]

      Alvaro, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858. doi: 10.1021/ja901793w  doi: 10.1021/ja901793w

    22. [22]

      Fernandez-Rodriguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180. doi:10.1021/ja0580340  doi: 10.1021/ja0580340

    23. [23]

      Ma, D.; Geng, Q.; Zhang, H.; Jiang, Y. Angew. Chem. Int. Ed. 2010, 49, 1291. doi: 10.1002/anie.200905646  doi: 10.1002/anie.200905646

    24. [24]

      Cao, H.; Chen, L.; Liu, J.; Cai, H.; Deng, H.; Chen, G.; Yan, C.; Chen, Y. RSC Adv. 2015, 5, 22356. doi: 10.1039/C5RA01342A  doi: 10.1039/C5RA01342A

    25. [25]

      Ferraccioli, R. Cur. Org. Synth. 2012, 9, 96. doi: 10.2174/157017912798889224  doi: 10.2174/157017912798889224

    26. [26]

      Liao, Y.; Peng, Y.; Qi, H.; Deng, G. -J.; Gong, H.; Li, C. -J. Chem. Commun. 2015, 51, 1031. doi: 10.1039/C4CC08370A  doi: 10.1039/C4CC08370A

    27. [27]

      Chen, X.; Hao, X. -S.; Goodhue, C. E.; Yu, J. -Q. J. Am. Chem. Soc. 2006, 128, 6790. doi: 10.1021/ja061715q  doi: 10.1021/ja061715q

    28. [28]

      Chu, L.; Yue, X.; Qing, F. -L. Org. Lett. 2010, 12, 1644. doi: 10.1021/ol100449c  doi: 10.1021/ol100449c

    29. [29]

      Fukuzawa, S. -I.; Shimizu, E.; Atsumi, Y.; Haga, M.; Ogata, K. Tetrahedron Lett. 2009, 50, 2374. doi: 10.1016/j.tetlet.2009.02.214  doi: 10.1016/j.tetlet.2009.02.214

    30. [30]

      Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. J. Org. Chem. 2010, 75, 6732. doi: 10.1021/jo1014849  doi: 10.1021/jo1014849

    31. [31]

      Zhou, A.-X.; Liu, X.-Y.; Yang, K.; Zhao, S. -C.; Liang, Y. -M. Org. Biomol. Chem. 2011, 9, 5456. doi: 10.1039/C1OB05395G  doi: 10.1039/C1OB05395G

    32. [32]

      Ranjit, S.; Lee, R.; Heryadi, D.; Shen, C.; Wu, J.; Zhang, P.; Huang, K.-W.; Liu, X. J. Org. Chem. 2011, 76, 8999. doi: 10.1021/jo2017444  doi: 10.1021/jo2017444

    33. [33]

      Alves, D.; Lara, R. G.; Contreira, M. E.; Radatz, C. S.; Duarte, L. F. B.; Perin, G. Tetrahedron Lett. 2012, 53, 3364. doi: 10.1016/j.tetlet.2012.04.094  doi: 10.1016/j.tetlet.2012.04.094

    34. [34]

      Dai, C.; Xu. Z.; Huang, F.; Yu, Z.; Gao, Y. -F. J. Org. Chem. 2012, 77, 4414. doi: 10.1021/jo202624s  doi: 10.1021/jo202624s

    35. [35]

      Rosario, A. R.; Casola, K. K.; Oliveira, C. E. S.; Zeni, G. Adv. Synth. Catal. 2013, 355, 2960. doi: 10.1002/adsc.201300497  doi: 10.1002/adsc.201300497

    36. [36]

      Zheng, Z.; Qi, D.; Shi, L. Catal. Commun. 2015, 66, 83. doi: 10.1016/j.catcom.2015.03.023  doi: 10.1016/j.catcom.2015.03.023

    37. [37]

      Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. doi: 10.1021/cr040075b  doi: 10.1021/cr040075b

    38. [38]

      Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880. doi: 10.3762/bjoc.6.88  doi: 10.3762/bjoc.6.88

    39. [39]

      Jeschke, P. Pest Manag. Sci. 2010, 66, 10. doi: 10.1002/ps.1829  doi: 10.1002/ps.1829

    40. [40]

      Yang, Y. -D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782. doi: 10.1021/ja402455f  doi: 10.1021/ja402455f

    41. [41]

      Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457. doi: 10.1002/anie.201209817  doi: 10.1002/anie.201209817

    42. [42]

      Li, Y.; Ye, Z.; Bellman, T. M.; Chi, T.; Dai, M. Org. Lett. 2015, 17, 2186. doi: 10.1021/acs.orglett.5b00782  doi: 10.1021/acs.orglett.5b00782

    43. [43]

      Hu, F.; Shao, X.; Zhu, D.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2014, 53, 6105. doi: 10.1002/anie.201402573  doi: 10.1002/anie.201402573

    44. [44]

      Bootwicha, T.; Liu, X.; Pluta, R.; Atodiresei, I, Rueping, M. Angew. Chem. Int. Ed. 2013, 52, 12856. doi: 10.1002/anie.201304957  doi: 10.1002/anie.201304957

    45. [45]

      Baert, F.; Colomb, J.; Billard, T. Angew. Chem. Int. Ed. 2012, 51, 10382. doi: 10.1002/anie.201205156  doi: 10.1002/anie.201205156

    46. [46]

      Kang, K.; Xu, C.; Shen, Q. Org. Chem. Front. 2014, 1, 294. doi: 10.1039/C3QO00068K  doi: 10.1039/C3QO00068K

    47. [47]

      Liu, J.; Chu, L.; Qing, F.-L. Org. Lett. 2013, 15, 894. doi: 10.1021/ol400032g  doi: 10.1021/ol400032g

    48. [48]

      Wang, Q.; Qi, Z.; Xie, F.; Li, X. Adv. Synth. Catal. 2015, 357, 355. doi: 10.1002/adsc.201400717  doi: 10.1002/adsc.201400717

    49. [49]

      Yin, G.; Kalvet, I.; Schoenebeck, F. Angew. Chem. Int. Ed. 2015, 54, 6809. doi: 10.1002/anie.201501617  doi: 10.1002/anie.201501617

    50. [50]

      Zhang, C. -P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183. doi: 10.1021/ja210364r  doi: 10.1021/ja210364r

    51. [51]

      Zhu, X. -L.; Xu, J. -H.; Cheng, D. -J.; Zhao, L. -J.; Liu, X. -Y.; Tan, B. Org. Lett. 2014, 16, 2192. doi: 10.1021/ol5006888  doi: 10.1021/ol5006888

    52. [52]

      Zhu, L.; Wang, G.; Gou, Q.; Xu, Z.; Zhang, D.; Wang, R. Org. Lett. 2014, 16, 5390. doi: 10.1021/ol502624z  doi: 10.1021/ol502624z

    53. [53]

      Ye, K. -Y.; Zhang, X.; Dai, L. -X.; You, S. -L. J. Org. Chem. 2014, 79, 12106. doi: 10.1021/jo5019393  doi: 10.1021/jo5019393

    54. [54]

      Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237. doi: 10.1021/ja3092278  doi: 10.1021/ja3092278

    55. [55]

      Yan, X. -B.; Gao, P.; Yang, H. -B.; Li, Y. -X.; Liu, X. -Y.; Liang, Y. -M. Tetrahedron 2014, 70, 8730. doi: 10.1016/j.tet.2014.09.042  doi: 10.1016/j.tet.2014.09.042

    56. [56]

      Shibahara, F.; Kanai, T.; Yamaguchi, E.; Kamei, A.; Yamauchi, T.; Murai, T. Chem. Asian J. 2014, 9, 237. doi: 10.1002/asia.201300882  doi: 10.1002/asia.201300882

    57. [57]

      Chen, C.; Xu, X. -H.; Yang, B.; Qing, F. -L. Org. Lett. 2014, 16, 3372. doi: 10.1021/ol501400u  doi: 10.1021/ol501400u

    58. [58]

      Yang, Y.; Dong, W.; Gou, Y.; Rioux, R. M. Green Chem. 2013, 15, 3170. doi: 10.1039/C3GC41330F  doi: 10.1039/C3GC41330F

    59. [59]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. doi: 10.1021/cr900184e  doi: 10.1021/cr900184e

    60. [60]

      Daugulis, O.; Do, H. -Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. doi: 10.1021/ar9000058  doi: 10.1021/ar9000058

    61. [61]

      He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. -Q. Chem. Rev. 2017, 117, 8754. doi: 10.1021/acs.chemrev.6b00622  doi: 10.1021/acs.chemrev.6b00622

    62. [62]

      Iwasaki, M.; Iyanaga, M.; Tsuchiya, Y.; Nishimura, Y.; Li, W.; Li, Z.; Nishihara, Y. Chem. Eur. J. 2014, 20, 2459. doi: 10.1002/chem.201304717  doi: 10.1002/chem.201304717

    63. [63]

      Iwasaki, M.; Kaneshika, W.; Tsushiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330. doi: 10.1021/jo502274t  doi: 10.1021/jo502274t

    64. [64]

      Zhang, X. -S.; Li, G.; Zhang, X. -G.; Zhang, X. -H. Tetrahedron 2015, 71, 5458. doi: 10.1016/j.tet.2015.06.077  doi: 10.1016/j.tet.2015.06.077

    65. [65]

      Xu, C.; Shen, Q. Org. Lett. 2014, 16, 2046. doi: 10.1021/ol5006533  doi: 10.1021/ol5006533

    66. [66]

      Yin, W.; Wang, Z.; Huang, Y. Adv. Synth. Catal. 2014, 356, 2998. doi: 10.1002/adsc.201400362  doi: 10.1002/adsc.201400362

    67. [67]

      Xiong, H. -Y.; Besset, T.; Cahard, D.; Pannecoucke, X. J. Org. Chem. 2015, 80, 4204. doi: 10.1021/acs.joc.5b00505  doi: 10.1021/acs.joc.5b00505

    68. [68]

      Anbarasan, P.; Neumann, H.; Beller, M. Chem. Commun. 2011, 47, 3233. doi: 10.1039/C0CC04405A  doi: 10.1039/C0CC04405A

    69. [69]

      Saravanan, P.; Anbarasan, P. Org. Lett. 2014, 16, 848. doi: 10.1021/ol4036209  doi: 10.1021/ol4036209

    70. [70]

      Vásquez-Céspedes, S.; Ferry, A.; Candish, L.; Glorius, F. Angew. Chem. Int. Ed. 2015, 54, 5772. doi: 10.1002/anie.201411997  doi: 10.1002/anie.201411997

    71. [71]

      Jiang, Y.; Liang, G.; Zhang, C.; Lohn, T. -P. Eur. J. Org. Chem. 2016, 3326. doi: 10.1002/ejoc.201600588  doi: 10.1002/ejoc.201600588

    72. [72]

      Nakao, Y. Chem. Rec. 2011, 11, 242. doi: 10.1002/tcr.201100023  doi: 10.1002/tcr.201100023

    73. [73]

      Yan, S. -Y.; Liu, Y. -J.; Liu, B.; Liu, Y. -H.; Shi, B. -F. Chem. Commun. 2015, 51, 4069. doi: 10.1039/C4CC10446C  doi: 10.1039/C4CC10446C

    74. [74]

      Yang, K.; Wang, Y.; Chen, X.; Kadi, A. A.; Fun, H. -K.; Sun, H.; Zhang, Y.; Lu, H. Chem. Commun. 2015, 51, 3582. doi: 10.1039/C4CC10431E  doi: 10.1039/C4CC10431E

    75. [75]

      Lin, C.; Li, D.; Wang, B.; Yao, J.; Zhang, Y. Org. Lett. 2015, 17, 1328. doi: 10.1021/acs.orglett.5b00337  doi: 10.1021/acs.orglett.5b00337

    76. [76]

      Reddy, V. P.; Qiu, R.; Iwasaki, T.; Kambe, N. Org. Biomol. Chem. 2015, 13, 6803. doi: 10.1039/C5OB00149H  doi: 10.1039/C5OB00149H

    77. [77]

      Lin, C.; Yu, W.; Yao, J.; Wang, B.; Liu, Z.; Zhang, Y. Org. Lett. 2015, 17, 1340. doi: 10.1021/acs.orglett.5b00471  doi: 10.1021/acs.orglett.5b00471

    78. [78]

      Wang, X.; Qiu, R.; Yan, C.; Reddy, V. P.; Zhu, L.; Xu, X.; Yin, S. -F. Org. Lett. 2015, 17, 1970. doi: 10.1021/acs.orglett.5b00706  doi: 10.1021/acs.orglett.5b00706

    79. [79]

      Ye, X.; Petersen, J. L.; Shi, X. Chem. Commun. 2015, 51, 7863. doi: 10.1039/C5CC01970B  doi: 10.1039/C5CC01970B

    80. [80]

      Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291. doi: 10.1039/C4CS00239C  doi: 10.1039/C4CS00239C

    81. [81]

      Yang, Y.; Hou, W.; Qin, L.; Du, J.; Feng, H.; Zhou, B.; Li, Y. Chem. Eur. J. 2014, 20, 416. doi: 10.1002/chem.201303730  doi: 10.1002/chem.201303730

    82. [82]

      Wang, Q.; Xie, F.; Li, X. J. Org. Chem. 2015, 80, 8361. doi: 10.1021/acs.joc.5b00940  doi: 10.1021/acs.joc.5b00940

    83. [83]

      Xie, W.; Li, B.; Wang, B. J. Org. Chem. 2016, 81, 396. doi: 10.1021/acs.joc.5b01943  doi: 10.1021/acs.joc.5b01943

    84. [84]

      Maity, S. Karmakar, U.; Samanta, R. Chem. Commun. 2017, 53, 12197. doi: 10.1039/C7CC07086A  doi: 10.1039/C7CC07086A

    85. [85]

      Gensch, T.; Klauck, F. J. R.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 11287. doi: 10.1002/anie.201605193  doi: 10.1002/anie.201605193

    86. [86]

      Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G. S.; Baidya, M. Org. Lett. 2017, 19, 2430. doi: 10.1021/acs.orglett.7b00996  doi: 10.1021/acs.orglett.7b00996

    87. [87]

      Zhang, M.; Zhang, S.; Pan, C.; Chen, F. Synth. Commun. 2012, 42, 2844. doi: 10.1080/00397911.2011.569867  doi: 10.1080/00397911.2011.569867

    88. [88]

      Ravi, C.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2014, 16, 2978. doi: 10.1021/ol501117z  doi: 10.1021/ol501117z

    89. [89]

      Liu, Y.; Zhang, Y.; Hu, C.; Wan, J. -P.; Wen, C. RSC Adv. 2014, 4, 35528. doi: 10.1039/C4RA05206D  doi: 10.1039/C4RA05206D

    90. [90]

      Hiebel, M. -A.; Raboin, S. B. Green Chem. 2015, 17, 937. doi: 10.1039/C4GC01462F  doi: 10.1039/C4GC01462F

    91. [91]

      Parumala, S. K. R.; Peddinti, R.; K. Green Chem. 2015, 17, 4068. doi: 10.1039/C5GC00403A  doi: 10.1039/C5GC00403A

    92. [92]

      Yang, D.; Sun, P.; Wei, W.; Meng, L.; He, L.; Fang, B.; Jiang, W.; Wang, H. Org. Chem. Front. 2016, 3, 1457. doi: 10.1039/C6QO00407E  doi: 10.1039/C6QO00407E

    93. [93]

      Chouldhury, P.; Roy, B.; Basu, B. Asian J. Org. Chem. 2017, 6, 1569. doi: 10.1002/ajoc.201700275  doi: 10.1002/ajoc.201700275

    94. [94]

      Bai, F.; Zhang, S.; Wei, L.; Liu, Y. Asian J. Org. Chem. 2018, 7, 371. doi: 10.1002/ajoc.201700677  doi: 10.1002/ajoc.201700677

    95. [95]

      Li, B.; Chen, Z.; Cao, H.; Zhao, H. Org. Lett. 2018, 20, 3291. doi: 10.1021/acs.orglett.8b01168  doi: 10.1021/acs.orglett.8b01168

    96. [96]

      Tang, R. -Y.; Xie, Y. -X.; Xie, Y. -L.; Xiang, J. -N.; Li, J. -H. Chem. Commun. 2011, 47, 12867. doi: 10.1039/C1CC15397H  doi: 10.1039/C1CC15397H

    97. [97]

      Zou, L. -H.; Reball, J.; Mottweiler, J.; Bolm, C. Chem. Commun. 2012, 48, 11307. doi: 10.1039/C2CC36711D  doi: 10.1039/C2CC36711D

    98. [98]

      Huang, D.; Chen, J.; Dan, W.; Ding, J.; Liu, M.; Wu, H. Adv. Synth. Catal. 2012, 354, 2123. doi: 10.1002/adsc.201200227  doi: 10.1002/adsc.201200227

    99. [99]

      Ge, W.; Wei, Y. Green Chem. 2012, 14, 2066. doi: 10.1039/C2GC35337G  doi: 10.1039/C2GC35337G

    100. [100]

      Guo, S. -R.; Yuan, Y. -Q.; Xiang, J. -N. Org. Lett. 2013, 15, 4654. doi: 10.1021/ol402281f  doi: 10.1021/ol402281f

    101. [101]

      Sang, P.; Chen, Z.; Zou, J.; Zhang, Y. Green Chem. 2013, 15, 2096. doi: 10.1039/C3GC40724A  doi: 10.1039/C3GC40724A

    102. [102]

      Azeredo, J.; Godoi, M.; Martins, G. M.; Silverira, C. C.; Braga, A. L. J. Org. Chem. 2014, 79, 4125. doi: 10.1021/jo5000779  doi: 10.1021/jo5000779

    103. [103]

      Gao, Z.; Zhu, X.; Zhang, R. RSC Adv. 2014, 4, 19891. doi: 10.1039/C4RA01240B  doi: 10.1039/C4RA01240B

    104. [104]

      Rafique, J.; Saba, S.; Franco, M. S.; Bettanin, L.; Schneider, A. R.; Silva, L. T.; Braga, A. L. Chem. Eur. J. 2018, 24, 4173. doi: 10.1002/chem.201705404  doi: 10.1002/chem.201705404

    105. [105]

      Yu, Y.; Zhou, Y.; Song, Z.; Liang, G. Org. Biomol. Chem. 2018, 16, 4958. doi: 10.1039/C8OB00948A  doi: 10.1039/C8OB00948A

    106. [106]

      Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Chem. Commun. 2011, 47, 9188. doi: 10.1039/C1CC13633J  doi: 10.1039/C1CC13633J

    107. [107]

      Kumaraswamy, G.; Raju, R.; Narayanarao, V. RSC Adv. 2015, 5, 22718. doi: 10.1039/C5RA00646E  doi: 10.1039/C5RA00646E

    108. [108]

      Zhao, W.; Zhou, A. ChemCatChem 2015, 7, 3464. doi: 10.1002/cctc.201500673  doi: 10.1002/cctc.201500673

    109. [109]

      Jiang, L.; Yi, W.; Liu, Q. Adv. Synth. Catal. 2016, 358, 3700. doi: 10.1002/adsc.201600651  doi: 10.1002/adsc.201600651

    110. [110]

      Yang, F. -L.; Tian, S. -K. Angew. Chem. Int. Ed. 2013, 52, 4929. doi: 10.1002/anie.201301437  doi: 10.1002/anie.201301437

    111. [111]

      Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem. 2014, 79, 10605. doi: 10.1021/jo501778h  doi: 10.1021/jo501778h

    112. [112]

      Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314. doi: 10.1039/C5OB00033E  doi: 10.1039/C5OB00033E

    113. [113]

      Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167. doi: 10.1021/acs.joc.5b01602  doi: 10.1021/acs.joc.5b01602

    114. [114]

      Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S. RSC Adv. 2014, 4, 49165. doi: 10.1039/C4RA08669D  doi: 10.1039/C4RA08669D

    115. [115]

      Xiao, F.; Xie, H.; Liu, S.; Deng, G. -J. Adv. Synth. Catal. 2014, 356, 364. doi: 10.1002/adsc.201300773  doi: 10.1002/adsc.201300773

    116. [116]

      Ding, Y.; Wu, W.; Zhao, W.; Li, Y.; Xie, P.; Huang, Y.; Liu, Y.; Zhou, A. Org. Biomol. Chem. 2016, 14, 1428. doi: 10.1039/C5OB02073E  doi: 10.1039/C5OB02073E

    117. [117]

      Huang, X.; Wang, S.; Li, B.; Wang, X.; Ge, Z.; Li, R. RSC Adv. 2015, 5, 22654. doi: 10.1039/C4RA17237J  doi: 10.1039/C4RA17237J

    118. [118]

      Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. RSC Adv. 2015, 5, 108030. doi: 10.1039/C5RA24351C  doi: 10.1039/C5RA24351C

    119. [119]

      Lin, Y. -M.; Lu, G. -P.; Wang, G. -X.; Yi, W. -B. Adv. Synth. Catal. 2016, 358, 4100. doi: 10.1002/adsc.201600846  doi: 10.1002/adsc.201600846

    120. [120]

      Gou, Y. -J.; Lu, S.; Tian, L. -L.; Huang, E. -L.; Hao, X. -Q.; Zhu, X.; Shao, T.; Song, M. -P. J. Org. Chem. 2018, 83, 338. doi: 10.1021/acs.joc.7b02734  doi: 10.1021/acs.joc.7b02734

    121. [121]

      Liu, C.; Fan, J.; Wu, M.; Chen, J.; Xie, M. Chin. J. Chem. 2018, 36, 819. doi: 10.1002/cjoc.201800164  doi: 10.1002/cjoc.201800164

    122. [122]

      Tudge, M.; Tamiya, M.; Savarin, C.; Humphrey, G. Org. Lett. 2006, 8, 565. doi: 10.1021/ol052615c  doi: 10.1021/ol052615c

    123. [123]

      Marcantoni, E.; Cipolletti, R.; Marsili, L.; Menichetti, S.; Properzi, R.; Viglianisi, C. Eur. J. Org. Chem. 2013, 132. doi: 10.1002/ejoc.201201100  doi: 10.1002/ejoc.201201100

    124. [124]

      Lin, Y.; Yi, W. Chin. J. Org. Chem. 2018, 38, 1207.[  doi: 10.6023/cjoc201711036

    125. [125]

      Liu, C.; Ding, L. -H. Org. Biomol. Chem. 2015, 13, 2251. doi: 10.1039/C4OB02575J  doi: 10.1039/C4OB02575J

    126. [126]

      Qi, H.; Zhang, T.; Wan, K.; Lou, M. J. Org. Chem. 2016, 81, 4262. doi: 10.1021/acs.joc.6b00636  doi: 10.1021/acs.joc.6b00636

    127. [127]

      Li, Y.; Zhu, F.; Wang, Z.; Wu, X. -F. Chem. Asian J. 2016, 11, 3503. doi: 10.1002/asia.201601376  doi: 10.1002/asia.201601376

    128. [128]

      Fan, W.; Yang, Z.; Jiang, B.; Li, G. Org. Chem. Front. 2017, 4, 1091. doi: 10.1039/C6QO00851H  doi: 10.1039/C6QO00851H

    129. [129]

      Sun, P.; Yang, D.; Wei, W.; Jiang, M.; Wang, Z.; Zhang, L.; Zhang, H.; Zhang, Z.; Wang, Y.; Wang, H. Green Chem. 2017, 19, 4785. doi: 10.1039/C7GC01891F  doi: 10.1039/C7GC01891F

    130. [130]

      Yang, X.; Bao, Y.; Dai, Z.; Zhou, Q.; Yang, F. Green Chem. 2018, 20, 3727. doi: 10.1039/C8GC01764F  doi: 10.1039/C8GC01764F

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(13)
  • Abstract views(674)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return