Electrical Conductance of Graphene with Point Defects
- Corresponding author: ZHOU Si, sizhou@dlut.edu.cn
Citation: LIU Nanshu, ZHOU Si, ZHAO Jijun. Electrical Conductance of Graphene with Point Defects[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1142-1149. doi: 10.3866/PKU.WHXB201810040
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
doi: 10.1126/science.1102896
Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
doi: 10.1038/nmat1849
Yi, M.; Shen, Z. J. Mater. Chem. A 2015, 3, 11700. doi: 10.1039/C5TA00252D
doi: 10.1039/C5TA00252D
Muñoz, B. R.; Gómez-aleixandre, C. Chem. Vap. Depos. 2013, 19, 297. doi: 10.1002/cvde.201300051
doi: 10.1002/cvde.201300051
Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46, 2329. doi: 10.1021/ar300203n
doi: 10.1021/ar300203n
Park, B. J.; Mitchel, W. C.; Grazulis, L.; Smith, H. E.; Eyink, K. G.; Boeckl, J. J.; Tomich, D. H.; Pacley, S. D.; Hoelscher, J. E. Adv. Mater. 2010, 45433, 4140. doi:10.1002/adma.201000756
doi: 10.1002/adma.201000756a
Ugeda, M. M.; Torre, F.; Brihuega, I.; Pou, P.; Martinez-Galera, A. J.; Perez, R.; Gomez-Rodriguez, J. M. Phys. Rev. Lett. 2011, 107, 116803. doi: 10.1103/PhysRevLett.107.116803
doi: 10.1103/PhysRevLett.107.116803
Banhart, F.; Kotakoski, J.; Krasheninnikov. A. V. ACS Nano 2011, 5, 26. doi: 10.1021/nn102598m
doi: 10.1021/nn102598m
Kotakoski, J.; Mangler, C.; Meyer. J. C. Nat. Commun. 2014, 5, 536. doi: 10.1038/ncomms4991
doi: 10.1038/ncomms4991
Robertson, A. W.; Allen, C. S.; Wu, Y. A.; He, K.; Olivier, J.; Neethling, J.; Kirkland, A. I.; Warner, J. H. Nat. Commun. 2012, 3, 1144. doi:10.1038/ncomms2141
doi: 10.1038/ncomms2141
Ugeda, M. M.; Brihuega, I. Phys. Rev. Lett. 2010, 104, 96804. doi: 10.1103/PhysRevLett.104.096804
doi: 10.1103/PhysRevLett.104.096804
Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501. doi: 10.1016/0009-2614(86)80661-3
doi: 10.1016/0009-2614[86]80661-3
Chen, J. H.; Li, L.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S. Nat. Phys. 2011, 7, 535. doi: 10.1038/nphys1962
doi: 10.1038/nphys1962
Barreiro, A.; Lazzeri, M.; Moser, J.; Mauri, F.; Bachtold, A. Phys. Rev. Lett. 2009, 103, 076601. doi: 10.1103/PhysRevLett.103.076601
doi: 10.1103/PhysRevLett.103.076601
Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Nano Lett. 2008, 12, 3582. doi: 10.1021/nl801386m
doi: 10.1021/nl801386m
Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. Phys. Rev. Lett. 2011, 106, 105505. doi: 10.1103/PhysRevLett.106.105505
doi: 10.1103/PhysRevLett.106.105505
Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 5, 326. doi: 10.1038/nnano.2010.53
doi: 10.1038/nnano.2010.53
Blanc, N.; Jean, F.; Krasheninnikov, A. V; Renaud, G.; Coraux, J. Phys. Rev. Lett. 2013, 111, 085501. doi: 10.1103/PhysRevLett.111.085501
doi: 10.1103/PhysRevLett.111.085501
Robertson, A. W.; Montanari, B.; He, K.; Allen, C. S.; Wu, Y. A.; Harrison, N. M.; Kirkland, A. I.; Warner, J. H. ACS Nano 2013, 7, 4495. doi: 10.1021/nn401113r
doi: 10.1021/nn401113r
Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Sarma, S. D.; Stormer, H. L.; Kim, P. Phys. Rev. Lett. 2007, 99, 246803. doi: 10.1103/PhysRevLett.99.246803
doi: 10.1103/PhysRevLett.99.246803
Moktadir, Z.; Hang, S.; Mizuta, H. Carbon 2015, 93, 325. doi: 10.1016/j.carbon.2015.05.049
doi: 10.1016/j.carbon.2015.05.049
Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Phys. Rev. Lett. 2009, 102, 236805. doi: 10.1103/PhysRevLett.102.236805
doi: 10.1103/PhysRevLett.102.236805
Cretu, O.; Krasheninnikov, A. V.; Rodríguez-Manzo, J. A.; Sun, L.; Nieminen, R. M.; Banhart, F. Phys. Rev. Lett. 2010, 105, 196102. doi: 10.1103/PhysRevLett.105.196102
doi: 10.1103/PhysRevLett.105.196102
Hou, Z.; Wang, X.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. Phys. Rev. B 2013, 87, 165401. doi: 10.1103/PhysRevB.87.165401
doi: 10.1103/PhysRevB.87.165401
Zaminpayma, E.; Razavi, M. E.; Nayebi, P. Appl. Surf. Sci. 2017, 414, 101. doi: 10.1016/j.apsusc.2017.04.065
doi: 10.1016/j.apsusc.2017.04.065
Pereira, V. M.; Guinea, F.; Lopes Dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Phys. Rev. Lett. 2006, 96, 036801. doi: 10.1103/PhysRevLett.96.036801
doi: 10.1103/PhysRevLett.96.036801
Nanda, B. R. K.; Sherafati, M.; Popović, Z. S.; Satpathy, S. New J. Phys. 2012, 14, 400. doi:10.1088/1367-2630/15/3/039501
doi: 10.1088/1367-2630/15/3/039501
Lherbier, A.; Dubois, S. M. M.; Declerck, X.; Roche, S.; Niquet, Y. M.; Charlier, J. C. Phys. Rev. Lett. 2011, 106, 046803. doi: 10.1103/PhysRevLett.106.046803
doi: 10.1103/PhysRevLett.106.046803
Skrypnyk, Y. V.; Loktev, V. M. Phys. Rev. B 2010, 82, 085436. doi: 10.1103/PhysRevB.82.085436
doi: 10.1103/PhysRevB.82.085436
Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B. Phys. Rev. B 2016, 94, 115406. doi: 10.1103/PhysRevB.94.115406
doi: 10.1103/PhysRevB.94.115406
Gorjizadeh, N.; Farajian, A. A; Kawazoe, Y. Nanotechnology 2009, 20, 015201. doi: 10.1088/0957-4484/20/1/015201
doi: 10.1088/0957-4484/20/1/015201
Deretzis, I.; Fiori, G.; Iannaccone, G.; Piccitto, G.; Magna, A. L. Phys. E 2012, 44, 981. doi: 10.1016/j.physe.2010.06.024
doi: 10.1016/j.physe.2010.06.024
Taluja, Y.; SanthiBhushan, B.; Yadav, S.; Srivastava, A. Superlattices Microstruct. 2016, 98, 306. doi: 10.1016/j.spmi.2016.08.044
doi: 10.1016/j.spmi.2016.08.044
Chowdhury, S.; Jana, D.; Mookerjee, A. Phys. E 2015, 74, 347. doi: 10.1016/j.physe.2015.07.019
doi: 10.1016/j.physe.2015.07.019
Jamaati, M.; Namiranian, A. Comput. Mater. Sci. 2015, 101, 156. doi: 10.1016/j.commatsci.2015.01.037
doi: 10.1016/j.commatsci.2015.01.037
Do, V. N.; Dollfus, P. J. Appl. Phys. 2009, 106, 023719. doi: 10.1063/1.3176956
doi: 10.1063/1.3176956
Peng, X. Y.; Ahuja, R. Nano Lett. 2008, 8, 4464. doi: 10.1021/nl802409q
doi: 10.1021/nl802409q
Appelhans, D. J.; Carr, L. D.; Lusk, M. T. New J. Phys. 2010, 12, 135. doi: 10.1088/1367-2630/12/12/125006
doi: 10.1088/1367-2630/12/12/125006
Datta, S. Superlattices Microstruct. 2000, 28, 253. doi: 10.1006/spmi.2000.0920
doi: 10.1006/spmi.2000.0920
Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Phys. Rev. B -Condens. Matter Mater. Phys. 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401
doi: 10.1103/PhysRevB.65.165401
Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407. doi: 10.1103/PhysRevB.63.245407
doi: 10.1103/PhysRevB.63.245407
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
doi: 10.1103/PhysRevLett.77.3865
Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1995; pp. 88-89.
Li, T. C.; Lu, S. Phys. Rev. B 2008, 77, 085408. doi: 10.1103/PhysRevB.77.085408.
doi: 10.1103/PhysRevB.77.085408
Carlsson, J. M.; Scheffler, M. Phys. Rev. Lett. 2006, 96, 046806. doi: 10.1103/PhysRevLett.96.046806
doi: 10.1103/PhysRevLett.96.046806
Kang, J.; Bang, J.; Ryu, B.; Chang, K. J. Phys. Rev. B 2008, 77, 115453. doi: 10.1103/PhysRevB.77.115453
doi: 10.1103/PhysRevB.77.115453
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236