Citation: LIU Nanshu, ZHOU Si, ZHAO Jijun. Electrical Conductance of Graphene with Point Defects[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1142-1149. doi: 10.3866/PKU.WHXB201810040 shu

Electrical Conductance of Graphene with Point Defects

  • Corresponding author: ZHOU Si, sizhou@dlut.edu.cn
  • Received Date: 18 October 2018
    Revised Date: 4 December 2018
    Accepted Date: 3 February 2019
    Available Online: 21 October 2019

    Fund Project: Fundamental Research Funds for the Central Universities of China DUT16LAB01Fundamental Research Funds for the Central Universities of China DUT17LAB19The project was supported by the National Natural Science Foundation of China 11504041The project was supported by the National Natural Science Foundation of China (11504041), the Fundamental Research Funds for the Central Universities of China (DUT16LAB01, DUT17LAB19), and the Supercomputing Center of Dalian University of Technology, China

  • Graphene is one of the most promising materials in nanotechnology and has attracted worldwide attention and research interest owing to its high electrical conductivity, good thermal stability, and excellent mechanical strength. Perfect graphene samples exhibit outstanding electrical and mechanical properties. However, point defects are commonly observed during fabrication which deteriorate the performance of graphene based-devices. The transport properties of graphene with point defects essentially depend on the imperfection of the hexagonal carbon atom network and the scattering of carriers by localized states. Furthermore, an in-depth understanding of the effect of specific point defects on the electronic and transport properties of graphene is crucial for specific applications. In this work, we employed density functional theory calculations and the non-equilibrium Green's function method to systematically elucidate the effects of various point defects on the electrical transport properties of graphene, including Stone-Waals and inverse Stone-Waals defects; and single and double vacancies. The electrical conductance highly depends on the type and concentration of point defects in graphene. Low concentrations of Stone-Waals, inverse Stone-Waals, and single-vacancy defects do not noticeably degrade electron transport. In comparison, DV585 induces a moderate reduction of 25%–34%, and DV55577 and DV5555-6-7777 induce significant suppression of 51%–62% in graphene. As the defect concentration increases, the electrical conductance reduces by a factor of 2–3 compared to the case of graphene monolayers with a low concentration of point defects. These distinct electrical transport behaviors are attributed to the variation of the graphene band structure; the point defects induce localized states near the Fermi level and result in energy splitting at the Dirac point due to the breaking of the intrinsic symmetry of the graphene honeycomb lattice. Double vacancies with larger defect concentrations exhibit more flat bands near the Fermi energy and more localized states in the defective region, resulting in the presence of resonant peaks close to the Fermi energy in the local density of states. This may cause resonant scattering of the carriers and a corresponding reduction of the conductance of graphene. Moreover, the partial charge densities for double vacancies and point defects with larger concentrations exhibit enhanced localization in the defective region that hinder the charge carriers. The electrical conductance shows an exponential decay as the defect concentration and energy splitting increase. These theoretical results provide important insights into the electrical transport properties of realistic graphene monolayers and will assist in the fabrication of high-performance graphene-based devices.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    3. [3]

      Yi, M.; Shen, Z. J. Mater. Chem. A 2015, 3, 11700. doi: 10.1039/C5TA00252D  doi: 10.1039/C5TA00252D

    4. [4]

      Muñoz, B. R.; Gómez-aleixandre, C. Chem. Vap. Depos. 2013, 19, 297. doi: 10.1002/cvde.201300051  doi: 10.1002/cvde.201300051

    5. [5]

      Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46, 2329. doi: 10.1021/ar300203n  doi: 10.1021/ar300203n

    6. [6]

      Park, B. J.; Mitchel, W. C.; Grazulis, L.; Smith, H. E.; Eyink, K. G.; Boeckl, J. J.; Tomich, D. H.; Pacley, S. D.; Hoelscher, J. E. Adv. Mater. 2010, 45433, 4140. doi:10.1002/adma.201000756  doi: 10.1002/adma.201000756a

    7. [7]

      Ugeda, M. M.; Torre, F.; Brihuega, I.; Pou, P.; Martinez-Galera, A. J.; Perez, R.; Gomez-Rodriguez, J. M. Phys. Rev. Lett. 2011, 107, 116803. doi: 10.1103/PhysRevLett.107.116803  doi: 10.1103/PhysRevLett.107.116803

    8. [8]

      Banhart, F.; Kotakoski, J.; Krasheninnikov. A. V. ACS Nano 2011, 5, 26. doi: 10.1021/nn102598m  doi: 10.1021/nn102598m

    9. [9]

      Kotakoski, J.; Mangler, C.; Meyer. J. C. Nat. Commun. 2014, 5, 536. doi: 10.1038/ncomms4991  doi: 10.1038/ncomms4991

    10. [10]

      Robertson, A. W.; Allen, C. S.; Wu, Y. A.; He, K.; Olivier, J.; Neethling, J.; Kirkland, A. I.; Warner, J. H. Nat. Commun. 2012, 3, 1144. doi:10.1038/ncomms2141  doi: 10.1038/ncomms2141

    11. [11]

      Ugeda, M. M.; Brihuega, I. Phys. Rev. Lett. 2010, 104, 96804. doi: 10.1103/PhysRevLett.104.096804  doi: 10.1103/PhysRevLett.104.096804

    12. [12]

      Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501. doi: 10.1016/0009-2614(86)80661-3  doi: 10.1016/0009-2614[86]80661-3

    13. [13]

      Chen, J. H.; Li, L.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S. Nat. Phys. 2011, 7, 535. doi: 10.1038/nphys1962  doi: 10.1038/nphys1962

    14. [14]

      Barreiro, A.; Lazzeri, M.; Moser, J.; Mauri, F.; Bachtold, A. Phys. Rev. Lett. 2009, 103, 076601. doi: 10.1103/PhysRevLett.103.076601  doi: 10.1103/PhysRevLett.103.076601

    15. [15]

      Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Nano Lett. 2008, 12, 3582. doi: 10.1021/nl801386m  doi: 10.1021/nl801386m

    16. [16]

      Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. Phys. Rev. Lett. 2011, 106, 105505. doi: 10.1103/PhysRevLett.106.105505  doi: 10.1103/PhysRevLett.106.105505

    17. [17]

      Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. Nat. Nanotechnol. 2010, 5, 326. doi: 10.1038/nnano.2010.53  doi: 10.1038/nnano.2010.53

    18. [18]

      Blanc, N.; Jean, F.; Krasheninnikov, A. V; Renaud, G.; Coraux, J. Phys. Rev. Lett. 2013, 111, 085501. doi: 10.1103/PhysRevLett.111.085501  doi: 10.1103/PhysRevLett.111.085501

    19. [19]

      Robertson, A. W.; Montanari, B.; He, K.; Allen, C. S.; Wu, Y. A.; Harrison, N. M.; Kirkland, A. I.; Warner, J. H. ACS Nano 2013, 7, 4495. doi: 10.1021/nn401113r  doi: 10.1021/nn401113r

    20. [20]

      Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Sarma, S. D.; Stormer, H. L.; Kim, P. Phys. Rev. Lett. 2007, 99, 246803. doi: 10.1103/PhysRevLett.99.246803  doi: 10.1103/PhysRevLett.99.246803

    21. [21]

      Moktadir, Z.; Hang, S.; Mizuta, H. Carbon 2015, 93, 325. doi: 10.1016/j.carbon.2015.05.049  doi: 10.1016/j.carbon.2015.05.049

    22. [22]

      Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Phys. Rev. Lett. 2009, 102, 236805. doi: 10.1103/PhysRevLett.102.236805  doi: 10.1103/PhysRevLett.102.236805

    23. [23]

      Cretu, O.; Krasheninnikov, A. V.; Rodríguez-Manzo, J. A.; Sun, L.; Nieminen, R. M.; Banhart, F. Phys. Rev. Lett. 2010, 105, 196102. doi: 10.1103/PhysRevLett.105.196102  doi: 10.1103/PhysRevLett.105.196102

    24. [24]

      Hou, Z.; Wang, X.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. Phys. Rev. B 2013, 87, 165401. doi: 10.1103/PhysRevB.87.165401  doi: 10.1103/PhysRevB.87.165401

    25. [25]

      Zaminpayma, E.; Razavi, M. E.; Nayebi, P. Appl. Surf. Sci. 2017, 414, 101. doi: 10.1016/j.apsusc.2017.04.065  doi: 10.1016/j.apsusc.2017.04.065

    26. [26]

      Pereira, V. M.; Guinea, F.; Lopes Dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Phys. Rev. Lett. 2006, 96, 036801. doi: 10.1103/PhysRevLett.96.036801  doi: 10.1103/PhysRevLett.96.036801

    27. [27]

      Nanda, B. R. K.; Sherafati, M.; Popović, Z. S.; Satpathy, S. New J. Phys. 2012, 14, 400. doi:10.1088/1367-2630/15/3/039501  doi: 10.1088/1367-2630/15/3/039501

    28. [28]

      Lherbier, A.; Dubois, S. M. M.; Declerck, X.; Roche, S.; Niquet, Y. M.; Charlier, J. C. Phys. Rev. Lett. 2011, 106, 046803. doi: 10.1103/PhysRevLett.106.046803  doi: 10.1103/PhysRevLett.106.046803

    29. [29]

      Skrypnyk, Y. V.; Loktev, V. M. Phys. Rev. B 2010, 82, 085436. doi: 10.1103/PhysRevB.82.085436  doi: 10.1103/PhysRevB.82.085436

    30. [30]

      Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B. Phys. Rev. B 2016, 94, 115406. doi: 10.1103/PhysRevB.94.115406  doi: 10.1103/PhysRevB.94.115406

    31. [31]

      Gorjizadeh, N.; Farajian, A. A; Kawazoe, Y. Nanotechnology 2009, 20, 015201. doi: 10.1088/0957-4484/20/1/015201  doi: 10.1088/0957-4484/20/1/015201

    32. [32]

      Deretzis, I.; Fiori, G.; Iannaccone, G.; Piccitto, G.; Magna, A. L. Phys. E 2012, 44, 981. doi: 10.1016/j.physe.2010.06.024  doi: 10.1016/j.physe.2010.06.024

    33. [33]

      Taluja, Y.; SanthiBhushan, B.; Yadav, S.; Srivastava, A. Superlattices Microstruct. 2016, 98, 306. doi: 10.1016/j.spmi.2016.08.044  doi: 10.1016/j.spmi.2016.08.044

    34. [34]

      Chowdhury, S.; Jana, D.; Mookerjee, A. Phys. E 2015, 74, 347. doi: 10.1016/j.physe.2015.07.019  doi: 10.1016/j.physe.2015.07.019

    35. [35]

      Jamaati, M.; Namiranian, A. Comput. Mater. Sci. 2015, 101, 156. doi: 10.1016/j.commatsci.2015.01.037  doi: 10.1016/j.commatsci.2015.01.037

    36. [36]

      Do, V. N.; Dollfus, P. J. Appl. Phys. 2009, 106, 023719. doi: 10.1063/1.3176956  doi: 10.1063/1.3176956

    37. [37]

      Peng, X. Y.; Ahuja, R. Nano Lett. 2008, 8, 4464. doi: 10.1021/nl802409q  doi: 10.1021/nl802409q

    38. [38]

      Appelhans, D. J.; Carr, L. D.; Lusk, M. T. New J. Phys. 2010, 12, 135. doi: 10.1088/1367-2630/12/12/125006  doi: 10.1088/1367-2630/12/12/125006

    39. [39]

      Datta, S. Superlattices Microstruct. 2000, 28, 253. doi: 10.1006/spmi.2000.0920  doi: 10.1006/spmi.2000.0920

    40. [40]

      Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Phys. Rev. B -Condens. Matter Mater. Phys. 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401  doi: 10.1103/PhysRevB.65.165401

    41. [41]

      Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407. doi: 10.1103/PhysRevB.63.245407  doi: 10.1103/PhysRevB.63.245407

    42. [42]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    43. [43]

      Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1995; pp. 88-89.

    44. [44]

      Li, T. C.; Lu, S. Phys. Rev. B 2008, 77, 085408. doi: 10.1103/PhysRevB.77.085408.  doi: 10.1103/PhysRevB.77.085408

    45. [45]

      Carlsson, J. M.; Scheffler, M. Phys. Rev. Lett. 2006, 96, 046806. doi: 10.1103/PhysRevLett.96.046806  doi: 10.1103/PhysRevLett.96.046806

    46. [46]

      Kang, J.; Bang, J.; Ryu, B.; Chang, K. J. Phys. Rev. B 2008, 77, 115453. doi: 10.1103/PhysRevB.77.115453  doi: 10.1103/PhysRevB.77.115453

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    3. [3]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    4. [4]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    5. [5]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    6. [6]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    7. [7]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    8. [8]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    9. [9]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    16. [16]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    17. [17]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    18. [18]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    19. [19]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    20. [20]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

Metrics
  • PDF Downloads(16)
  • Abstract views(609)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return