Photo-Induced Activation of Methane at Room Temperature
- Corresponding author: LI Lu, luli@jlu.edu.cn
Citation: MU Xiaoyue, LI Lu. Photo-Induced Activation of Methane at Room Temperature[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 968-976. doi: 10.3866/PKU.WHXB201810007
Choudhary, V. R.; Kinage, A. K.; Choudhary, T. V. Science 1997, 275, 1286. doi: 10.1126/science.275.5304.1286
doi: 10.1126/science.275.5304.1286
Lunsford, J. H. Catal. Today 2000, 63, 165. doi: 10.1016/S0920-5861(00)00456-9
doi: 10.1016/S0920-5861(00)00456-9
Holmen, A. Catal. Today 2009, 142, 2. doi: 10.1016/j.cattod.2009.01.004
doi: 10.1016/j.cattod.2009.01.004
Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715
doi: 10.1021/acs.chemrev.6b00715
Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Chem. Rev. 2017, 117, 8521. doi: 10.1021/acs.chemrev.6b00739
doi: 10.1021/acs.chemrev.6b00739
Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Energy Environ. Sci. 2014, 7, 2580. doi: 10.1039/C4EE00604F
doi: 10.1039/C4EE00604F
Richard, A. K. Science 2010, 328, 1624. doi: 10.1126/science.328.5986.1624
doi: 10.1126/science.328.5986.1624
Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424
doi: 10.1002/anie.201006424
Lelieveld, J.; Lechtenböhmer, S.; Assonov, S. S.; Brenninkmeijer, C. A. M.; Dienst, C.; Fischedick, M.; Hanke, T. Nature 2005, 434, 841. doi: 10.1038/434841a
doi: 10.1038/434841a
Bergman, R. G. Nature 2007, 446, 391. doi: 10.1038/446391a
doi: 10.1038/446391a
Arora, S.; Prasad, R. RSC Adv. 2016, 6, 108668. doi: 10.1039/C6RA20450C
doi: 10.1039/C6RA20450C
Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813. doi: 10.1039/C3CS60395D
doi: 10.1039/C3CS60395D
Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B. et al. J. Catal. 2008, 259, 147. doi: 10.1016/j.jcat.2008.08.003
doi: 10.1016/j.jcat.2008.08.003
Hook, J. P. V. Catal. Rev. -Sci. Eng. 1980, 21, 1. doi:10.1080/03602458008068059
doi: 10.1080/03602458008068059
Latimer, A. A.; Kulkarni, A. R.; Aljama, H, ; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; N rskov, J. K. Nat. Mater. 2017, 16, 225. doi:10.1038/nmat4760
doi: 10.1038/nmat4760
Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017, 356, 299. doi: 10.1126/science.aam9147
doi: 10.1126/science.aam9147
Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a
doi: 10.1038/417507a
Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035
doi: 10.1126/science.aam9035
Berndt, H.; Martin, A.; Brückner, A.; Schreier, E.; Müller, D.; Kosslick, H.; Wolf, G. -U.; Lücke, B. J. Catal. 2000, 191, 384. doi: 10.1006/jcat.1999.2786
doi: 10.1006/jcat.1999.2786
R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. J. J. Science 2003, 301, 814. doi: 10.1126/science.1086466
doi: 10.1126/science.1086466
Lunsford, J. H. Angew. Chem. Int. Ed. 1995, 34, 970. doi: 10.1002/anie.199509701
doi: 10.1002/anie.199509701
Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014, 43, 792. doi: 10.1039/C3CS60259A
doi: 10.1039/C3CS60259A
Zheng, H.; Ma, D.; Bao, X. H.; Hu, J. Z.; Kwak, J. H.; Wang, Y.; Peden, C. H. F. J. Am. Chem. Soc. 2008, 130, 3722. doi: 10.1021/ja7110916
doi: 10.1021/ja7110916
Wang, L.; Tao, L.; Xie, M.; Xu, G. Catal. Lett. 1993, 21, 35. doi: 10.1007/BF00767368
doi: 10.1007/BF00767368
Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Science 2014, 344, 616. doi: 10.1126/science.1253150
doi: 10.1126/science.1253150
Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Chem 2018, 4, 1902. doi: 10.1016/j.chempr.2018.05.006
doi: 10.1016/j.chempr.2018.05.006
Xu, Y. D.; Bao, X. H.; Lin, L. W. J. Catal. 2003, 216, 386. doi: 10.1016/S0021-9517(02)00124-0
doi: 10.1016/S0021-9517(02)00124-0
Kato, Y.; Yoshida, H.; Hattori, T. Chem. Commun. 1998, 21, 2389. doi: 10.1039/A806825I
doi: 10.1039/A806825I
Yuliati, L.; Yoshida, H. Chem. Soc. Rev. 2008, 37, 1592. doi: 10.1039/B710575B
doi: 10.1039/B710575B
Yoshida, H.; Matsushita, N.; Kato, Y.; Hattori, T. J. Phys. Chem. B 2003, 107, 8355. doi: 10.1021/jp034458+
Li, L.; Li, G. -D.; Yan, C.; Mu, X. -Y.; Pan, X. -L.; Zou, X. -X.; Wang, K. -X.; Chen, J. -S. Angew. Chem. Int. Ed. 2011, 50, 8299. doi: 10.1002/anie.201102320
doi: 10.1002/anie.201102320
Dietl, N.; Engeser, M.; Schwarz, H. Angew. Chem. Int. Ed. 2009, 48, 4861. doi: 10.1002/anie.200901596
doi: 10.1002/anie.200901596
Copéret, C. Chem. Rev. 2010, 110, 656. doi: 10.1021/cr900122p
doi: 10.1021/cr900122p
Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. J. Phys. Chem. C 2008, 112, 7223. doi: 10.1021/jp712029w
doi: 10.1021/jp712029w
Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S. Nature 1994, 367, 347. doi: 10.1038/367347a0
doi: 10.1038/367347a0
Li, L.; Cai, Y. -Y.; Li, G. -D.; Mu, X. -Y.; Wang, K. -X.; Chen, J. -S.; Angew. Chem. Int. Ed. 2012, 51, 4702. doi: 10.1002/anie.201200045
doi: 10.1002/anie.201200045
Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C. -J. J. Am. Chem. Soc. 2014, 136, 7793. doi: 10.1021/ja5004119
doi: 10.1021/ja5004119
Li, L.; Mu, X.; Liu, W.; Kong, X.; Fan, S.; Mi, Z.; Li, C. J. Angew. Chem. Int. Ed. 2014, 53, 14106. doi: 10.1002/anie.201408754
doi: 10.1002/anie.201408754
Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599. doi: 10.1038/nature01551
doi: 10.1038/nature01551
Ibbetson, J. P.; Fini, P. T.; Ness, K. D.; DenBaars, S. P.; Speck, J. S.; Mishra, U. K. Appl. Phys. Lett. 2000, 77, 250. doi: 10.1063/1.126940
doi: 10.1063/1.126940
Eller, B. S.; Yang, J. L.; Nemanich, R. J. J. Electron. Mat. 2014, 43, 4560. doi: 10.1007/s11664-014-3383-z
doi: 10.1007/s11664-014-3383-z
Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.; Yuan, R.; Huang, X.; Wang, X.; Wang X.; et al. Energy Environ. Sci. 2018, 11, 294. doi: 10.1056/NEJMoa1304459
doi: 10.1056/NEJMoa1304459
Yu, L. H.; Shao, Y.; Li, D. Z. Appl. Catal. B-Environ. 2017, 204, 216. doi: 10.1016/j.apcatb.2016.11.039
doi: 10.1016/j.apcatb.2016.11.039
Kaliaguine, S. L.; Shelimov B. N.; Kazansky, V. B. J. Catal. 1978, 55, 384. doi: 10.1016/0021-9517(78)90225-7
doi: 10.1016/0021-9517(78)90225-7
Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Nat. Commun. 2016, 7, 12273. doi: 10.1038/ncomms12273
doi: 10.1038/ncomms12273
Wada, K.; Yamada, H.; Watanabe Y.; Mitsudo, T. J. Chem. Soc. Faraday Trans. 1998, 94, 1771. doi: 10.1007/s10562-008-9491-8
doi: 10.1007/s10562-008-9491-8
López, H. H.; Martínez, A. Catal. Lett. 2002, 83, 37. doi: 10.1023/A:1020649313699
doi: 10.1023/A:1020649313699
Thampi, K. R.; Kiwi, J.; Grätzel, M. Catal. Lett. 1988, 1, 109. doi: 10.1007/BF00765891
doi: 10.1007/BF00765891
Ward, M. D.; Brazdil, J. F.; Mehandru, S. P.; Anderson, A. B. J. Phys. Chem. 1987, 91, 6515.
doi: 10.1021/j100310a019
Wada, K.; Yoshida, K.; Watanabe, Y. J. Chem. Soc. Faraday Trans. 1995, 91, 1647. doi: 10.1039/FT9959101647
doi: 10.1039/FT9959101647
Noceti, R. P.; Taylor, C. E.; D'Este, J. R. Catal. Today 1997, 33, 199. doi: 10.1016/S0920-5861(96)00155-1
doi: 10.1016/S0920-5861(96)00155-1
Villa, K.; Murcia-López, M.; Andreu, T.; Morante, J. R. Appl. Catal. B: Environ. 2015, 163, 150. doi: 10.1016/j.apcatb.2014.07.055
doi: 10.1016/j.apcatb.2014.07.055
Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. ACS Catal. 2017, 7, 2878. doi: 10.1021/acscatal.6b03535
doi: 10.1021/acscatal.6b03535
Hu, A. H.; Guo, J. J.; Pan, H.; Zuo, Z. W. Science 2018, doi: 10.1126/science.aat9750
doi: 10.1126/science.aat9750
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028