Citation: MU Xiaoyue, LI Lu. Photo-Induced Activation of Methane at Room Temperature[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 968-976. doi: 10.3866/PKU.WHXB201810007 shu

Photo-Induced Activation of Methane at Room Temperature

  • Corresponding author: LI Lu, luli@jlu.edu.cn
  • Received Date: 8 October 2018
    Revised Date: 30 November 2018
    Accepted Date: 30 November 2018
    Available Online: 7 September 2018

    Fund Project: the National Natural Science Foundation of China 21621001the 111 Project B17020the National Natural Science Foundation of China 21875090The project was supported by the National Natural Science Foundation of China (21875090, 21621001) and the 111 Project (B17020)

  • Methane, the most abundant constituent of natural gas, is a potential substitute for the dwindling petroleum resources for the chemical industry as a carbon-based feedstock. Over the last two decades, global research endeavors have focused on the development of more efficient and selective catalysts for the conversion of ubiquitous but inert methane. In addition, the transportation of gaseous methane in pipelines is unavoidably accompanied by leakage, and methane is recognized as a potent greenhouse gas (20 times more powerful than carbon dioxide per molecule). Thus, the conversion of methane into heavier derivatives is also of crucial environmental concern. Unfortunately, there is still a lack of economical and practical routes for methane conversion. Currently, the major route for methane conversion is the steam reforming of methane into synthetic gases, which is a multistep and energy-consuming route. Another option is to use photoenergy to drive the conversion of methane, which has significant advantages such as the capacity to minimize coking by running at room temperature. A promising approach to photocatalytic methane conversion is the photo-powered direct coupling or oxidation of methane to form ethane, methanol and hydrogen. The ethane or methanol produced can, in turn, be converted into ethene or liquid fuels through metathesis or dehydrogenation, respectively. Furthermore, the direct dehydrogenation of methane is the best way to produce clean H2 energy from fossil fuels since methane has the highest H/C ratio among hydrocarbons. However, the methane conversion efficiency of previously reported photocatalysts is low. Furthermore, the wavelength of light used in previously reported photocatalytic systems usually needs to be less than 270 nm, which is beyond the range of the solar spectrum (wavelength λ > 290 nm) reaching the Earth's surface. To achieve substantial yield and selectivity, and to exploit solar energy effectively, the development of photocatalytic systems with distinctly higher activity, higher selectivity, and lower photon energy threshold is desired. Over the past decades, many efforts have been made to activate the strong C―H bond in methane by light at room temperature. Based on the current state of research on photocatalytic methane conversion, we have focused our review on the following aspects: non-oxidative coupling of methane, dehydroaromatization of methane, and total and partial oxidation of methane. Finally, we summarize the difference between photocatalysis and thermal catalysis in the methane conversion reaction.
  • 加载中
    1. [1]

      Choudhary, V. R.; Kinage, A. K.; Choudhary, T. V. Science 1997, 275, 1286. doi: 10.1126/science.275.5304.1286  doi: 10.1126/science.275.5304.1286

    2. [2]

      Lunsford, J. H. Catal. Today 2000, 63, 165. doi: 10.1016/S0920-5861(00)00456-9  doi: 10.1016/S0920-5861(00)00456-9

    3. [3]

      Holmen, A. Catal. Today 2009, 142, 2. doi: 10.1016/j.cattod.2009.01.004  doi: 10.1016/j.cattod.2009.01.004

    4. [4]

      Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715  doi: 10.1021/acs.chemrev.6b00715

    5. [5]

      Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Chem. Rev. 2017, 117, 8521. doi: 10.1021/acs.chemrev.6b00739  doi: 10.1021/acs.chemrev.6b00739

    6. [6]

      Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Energy Environ. Sci. 2014, 7, 2580. doi: 10.1039/C4EE00604F  doi: 10.1039/C4EE00604F

    7. [7]

      Richard, A. K. Science 2010, 328, 1624. doi: 10.1126/science.328.5986.1624  doi: 10.1126/science.328.5986.1624

    8. [8]

      Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424  doi: 10.1002/anie.201006424

    9. [9]

      Lelieveld, J.; Lechtenböhmer, S.; Assonov, S. S.; Brenninkmeijer, C. A. M.; Dienst, C.; Fischedick, M.; Hanke, T. Nature 2005, 434, 841. doi: 10.1038/434841a  doi: 10.1038/434841a

    10. [10]

      Bergman, R. G. Nature 2007, 446, 391. doi: 10.1038/446391a  doi: 10.1038/446391a

    11. [11]

      Arora, S.; Prasad, R. RSC Adv. 2016, 6, 108668. doi: 10.1039/C6RA20450C  doi: 10.1039/C6RA20450C

    12. [12]

      Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813. doi: 10.1039/C3CS60395D  doi: 10.1039/C3CS60395D

    13. [13]

      Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B. et al. J. Catal. 2008, 259, 147. doi: 10.1016/j.jcat.2008.08.003  doi: 10.1016/j.jcat.2008.08.003

    14. [14]

      Hook, J. P. V. Catal. Rev. -Sci. Eng. 1980, 21, 1. doi:10.1080/03602458008068059  doi: 10.1080/03602458008068059

    15. [15]

      Latimer, A. A.; Kulkarni, A. R.; Aljama, H, ; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; N rskov, J. K. Nat. Mater. 2017, 16, 225. doi:10.1038/nmat4760  doi: 10.1038/nmat4760

    16. [16]

      Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017, 356, 299. doi: 10.1126/science.aam9147  doi: 10.1126/science.aam9147

    17. [17]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a  doi: 10.1038/417507a

    18. [18]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035  doi: 10.1126/science.aam9035

    19. [19]

      Berndt, H.; Martin, A.; Brückner, A.; Schreier, E.; Müller, D.; Kosslick, H.; Wolf, G. -U.; Lücke, B. J. Catal. 2000, 191, 384. doi: 10.1006/jcat.1999.2786  doi: 10.1006/jcat.1999.2786

    20. [20]

      R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. J. J. Science 2003, 301, 814. doi: 10.1126/science.1086466  doi: 10.1126/science.1086466

    21. [21]

      Lunsford, J. H. Angew. Chem. Int. Ed. 1995, 34, 970. doi: 10.1002/anie.199509701  doi: 10.1002/anie.199509701

    22. [22]

      Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014, 43, 792. doi: 10.1039/C3CS60259A  doi: 10.1039/C3CS60259A

    23. [23]

      Zheng, H.; Ma, D.; Bao, X. H.; Hu, J. Z.; Kwak, J. H.; Wang, Y.; Peden, C. H. F. J. Am. Chem. Soc. 2008, 130, 3722. doi: 10.1021/ja7110916  doi: 10.1021/ja7110916

    24. [24]

      Wang, L.; Tao, L.; Xie, M.; Xu, G. Catal. Lett. 1993, 21, 35. doi: 10.1007/BF00767368  doi: 10.1007/BF00767368

    25. [25]

      Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    26. [26]

      Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Chem 2018, 4, 1902. doi: 10.1016/j.chempr.2018.05.006  doi: 10.1016/j.chempr.2018.05.006

    27. [27]

      Xu, Y. D.; Bao, X. H.; Lin, L. W. J. Catal. 2003, 216, 386. doi: 10.1016/S0021-9517(02)00124-0  doi: 10.1016/S0021-9517(02)00124-0

    28. [28]

      Kato, Y.; Yoshida, H.; Hattori, T. Chem. Commun. 1998, 21, 2389. doi: 10.1039/A806825I  doi: 10.1039/A806825I

    29. [29]

      Yuliati, L.; Yoshida, H. Chem. Soc. Rev. 2008, 37, 1592. doi: 10.1039/B710575B  doi: 10.1039/B710575B

    30. [30]

      Yoshida, H.; Matsushita, N.; Kato, Y.; Hattori, T. J. Phys. Chem. B 2003, 107, 8355. doi: 10.1021/jp034458+

    31. [31]

      Li, L.; Li, G. -D.; Yan, C.; Mu, X. -Y.; Pan, X. -L.; Zou, X. -X.; Wang, K. -X.; Chen, J. -S. Angew. Chem. Int. Ed. 2011, 50, 8299. doi: 10.1002/anie.201102320  doi: 10.1002/anie.201102320

    32. [32]

      Dietl, N.; Engeser, M.; Schwarz, H. Angew. Chem. Int. Ed. 2009, 48, 4861. doi: 10.1002/anie.200901596  doi: 10.1002/anie.200901596

    33. [33]

      Copéret, C. Chem. Rev. 2010, 110, 656. doi: 10.1021/cr900122p  doi: 10.1021/cr900122p

    34. [34]

      Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. J. Phys. Chem. C 2008, 112, 7223. doi: 10.1021/jp712029w  doi: 10.1021/jp712029w

    35. [35]

      Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S. Nature 1994, 367, 347. doi: 10.1038/367347a0  doi: 10.1038/367347a0

    36. [36]

      Li, L.; Cai, Y. -Y.; Li, G. -D.; Mu, X. -Y.; Wang, K. -X.; Chen, J. -S.; Angew. Chem. Int. Ed. 2012, 51, 4702. doi: 10.1002/anie.201200045  doi: 10.1002/anie.201200045

    37. [37]

      Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C. -J. J. Am. Chem. Soc. 2014, 136, 7793. doi: 10.1021/ja5004119  doi: 10.1021/ja5004119

    38. [38]

      Li, L.; Mu, X.; Liu, W.; Kong, X.; Fan, S.; Mi, Z.; Li, C. J. Angew. Chem. Int. Ed. 2014, 53, 14106. doi: 10.1002/anie.201408754  doi: 10.1002/anie.201408754

    39. [39]

      Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599. doi: 10.1038/nature01551  doi: 10.1038/nature01551

    40. [40]

      Ibbetson, J. P.; Fini, P. T.; Ness, K. D.; DenBaars, S. P.; Speck, J. S.; Mishra, U. K. Appl. Phys. Lett. 2000, 77, 250. doi: 10.1063/1.126940  doi: 10.1063/1.126940

    41. [41]

      Eller, B. S.; Yang, J. L.; Nemanich, R. J. J. Electron. Mat. 2014, 43, 4560. doi: 10.1007/s11664-014-3383-z  doi: 10.1007/s11664-014-3383-z

    42. [42]

      Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.; Yuan, R.; Huang, X.; Wang, X.; Wang X.; et al. Energy Environ. Sci. 2018, 11, 294. doi: 10.1056/NEJMoa1304459  doi: 10.1056/NEJMoa1304459

    43. [43]

      Yu, L. H.; Shao, Y.; Li, D. Z. Appl. Catal. B-Environ. 2017, 204, 216. doi: 10.1016/j.apcatb.2016.11.039  doi: 10.1016/j.apcatb.2016.11.039

    44. [44]

      Kaliaguine, S. L.; Shelimov B. N.; Kazansky, V. B. J. Catal. 1978, 55, 384. doi: 10.1016/0021-9517(78)90225-7  doi: 10.1016/0021-9517(78)90225-7

    45. [45]

      Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Nat. Commun. 2016, 7, 12273. doi: 10.1038/ncomms12273  doi: 10.1038/ncomms12273

    46. [46]

      Wada, K.; Yamada, H.; Watanabe Y.; Mitsudo, T. J. Chem. Soc. Faraday Trans. 1998, 94, 1771. doi: 10.1007/s10562-008-9491-8  doi: 10.1007/s10562-008-9491-8

    47. [47]

      López, H. H.; Martínez, A. Catal. Lett. 2002, 83, 37. doi: 10.1023/A:1020649313699  doi: 10.1023/A:1020649313699

    48. [48]

      Thampi, K. R.; Kiwi, J.; Grätzel, M. Catal. Lett. 1988, 1, 109. doi: 10.1007/BF00765891  doi: 10.1007/BF00765891

    49. [49]

      Ward, M. D.; Brazdil, J. F.; Mehandru, S. P.; Anderson, A. B. J. Phys. Chem. 1987, 91, 6515.  doi: 10.1021/j100310a019

    50. [50]

      Wada, K.; Yoshida, K.; Watanabe, Y. J. Chem. Soc. Faraday Trans. 1995, 91, 1647. doi: 10.1039/FT9959101647  doi: 10.1039/FT9959101647

    51. [51]

      Noceti, R. P.; Taylor, C. E.; D'Este, J. R. Catal. Today 1997, 33, 199. doi: 10.1016/S0920-5861(96)00155-1  doi: 10.1016/S0920-5861(96)00155-1

    52. [52]

      Villa, K.; Murcia-López, M.; Andreu, T.; Morante, J. R. Appl. Catal. B: Environ. 2015, 163, 150. doi: 10.1016/j.apcatb.2014.07.055  doi: 10.1016/j.apcatb.2014.07.055

    53. [53]

      Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. ACS Catal. 2017, 7, 2878. doi: 10.1021/acscatal.6b03535  doi: 10.1021/acscatal.6b03535

    54. [54]

      Hu, A. H.; Guo, J. J.; Pan, H.; Zuo, Z. W. Science 2018, doi: 10.1126/science.aat9750  doi: 10.1126/science.aat9750

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    8. [8]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(7)
  • Abstract views(576)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return