Photo-Induced Activation of Methane at Room Temperature
- Corresponding author: LI Lu, luli@jlu.edu.cn
 
	            Citation:
	            
		            MU Xiaoyue, LI Lu. Photo-Induced Activation of Methane at Room Temperature[J]. Acta Physico-Chimica Sinica,
							;2019, 35(9): 968-976.
						
							doi:
								10.3866/PKU.WHXB201810007
						
					
				
					
				
	        
	                
				Choudhary, V. R.; Kinage, A. K.; Choudhary, T. V. Science 1997,  275, 1286. doi: 10.1126/science.275.5304.1286
												 doi: 10.1126/science.275.5304.1286
											
										
				Lunsford, J. H. Catal. Today 2000,  63, 165. doi: 10.1016/S0920-5861(00)00456-9
												 doi: 10.1016/S0920-5861(00)00456-9
											
										
				Holmen, A. Catal. Today 2009,  142, 2. doi: 10.1016/j.cattod.2009.01.004
												 doi: 10.1016/j.cattod.2009.01.004
											
										
				Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017,  117, 8497. doi: 10.1021/acs.chemrev.6b00715
												 doi: 10.1021/acs.chemrev.6b00715
											
										
				Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Chem. Rev. 2017,  117, 8521. doi: 10.1021/acs.chemrev.6b00739
												 doi: 10.1021/acs.chemrev.6b00739
											
										
				Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Energy Environ. Sci. 2014,  7, 2580. doi: 10.1039/C4EE00604F
												 doi: 10.1039/C4EE00604F
											
										
				Richard, A. K. Science 2010,  328, 1624. doi: 10.1126/science.328.5986.1624
												 doi: 10.1126/science.328.5986.1624
											
										
				Schwarz, H. Angew. Chem. Int. Ed. 2011,  50, 10096. doi: 10.1002/anie.201006424
												 doi: 10.1002/anie.201006424
											
										
				Lelieveld, J.; Lechtenböhmer, S.; Assonov, S. S.; Brenninkmeijer, C. A. M.; Dienst, C.; Fischedick, M.; Hanke, T. Nature 2005, 434, 841. doi: 10.1038/434841a
												 doi: 10.1038/434841a
											
										
				Bergman, R. G. Nature 2007,  446, 391. doi: 10.1038/446391a
												 doi: 10.1038/446391a
											
										
				Arora, S.; Prasad, R. RSC Adv. 2016,  6, 108668. doi: 10.1039/C6RA20450C
												 doi: 10.1039/C6RA20450C
											
										
				Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813. doi: 10.1039/C3CS60395D
												 doi: 10.1039/C3CS60395D
											
										
				Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B. et al. J. Catal. 2008,  259, 147. doi: 10.1016/j.jcat.2008.08.003
												 doi: 10.1016/j.jcat.2008.08.003
											
										
				Hook, J. P. V. Catal. Rev. -Sci. Eng. 1980,  21, 1. doi:10.1080/03602458008068059
												 doi: 10.1080/03602458008068059
											
										
				Latimer, A. A.; Kulkarni, A. R.; Aljama, H, ; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; N rskov, J. K. Nat. Mater. 2017,  16, 225. doi:10.1038/nmat4760
												 doi: 10.1038/nmat4760
											
										
				Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017,  356, 299. doi: 10.1126/science.aam9147
												 doi: 10.1126/science.aam9147
											
										
				Labinger, J. A.; Bercaw, J. E. Nature 2002,  417, 507. doi: 10.1038/417507a
												 doi: 10.1038/417507a
											
										
				Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017,  356, 523. doi: 10.1126/science.aam9035
												 doi: 10.1126/science.aam9035
											
										
				Berndt, H.; Martin, A.; Brückner, A.; Schreier, E.; Müller, D.; Kosslick, H.; Wolf, G. -U.; Lücke, B. J. Catal. 2000,  191, 384. doi: 10.1006/jcat.1999.2786
												 doi: 10.1006/jcat.1999.2786
											
										
				R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. J. J. Science 2003,  301, 814. doi: 10.1126/science.1086466
												 doi: 10.1126/science.1086466
											
										
				Lunsford, J. H. Angew. Chem. Int. Ed. 1995,  34, 970. doi: 10.1002/anie.199509701
												 doi: 10.1002/anie.199509701
											
										
				Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014,  43, 792. doi: 10.1039/C3CS60259A
												 doi: 10.1039/C3CS60259A
											
										
				Zheng, H.; Ma, D.; Bao, X. H.; Hu, J. Z.; Kwak, J. H.; Wang, Y.; Peden, C. H. F. J. Am. Chem. Soc. 2008,  130, 3722. doi: 10.1021/ja7110916
												 doi: 10.1021/ja7110916
											
										
				Wang, L.; Tao, L.; Xie, M.; Xu, G. Catal. Lett. 1993,  21, 35. doi: 10.1007/BF00767368
												 doi: 10.1007/BF00767368
											
										
				Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Science 2014,  344,  616. doi: 10.1126/science.1253150
												 doi: 10.1126/science.1253150
											
										
				Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Chem 2018,  4, 1902. doi: 10.1016/j.chempr.2018.05.006
												 doi: 10.1016/j.chempr.2018.05.006
											
										
				Xu, Y. D.; Bao, X. H.; Lin, L. W. J. Catal. 2003,  216, 386. doi: 10.1016/S0021-9517(02)00124-0
												 doi: 10.1016/S0021-9517(02)00124-0
											
										
				Kato, Y.; Yoshida, H.; Hattori, T. Chem. Commun. 1998,  21, 2389. doi: 10.1039/A806825I
												 doi: 10.1039/A806825I
											
										
				Yuliati, L.; Yoshida, H. Chem. Soc. Rev. 2008,  37, 1592. doi: 10.1039/B710575B
												 doi: 10.1039/B710575B
											
										
				Yoshida, H.; Matsushita, N.; Kato, Y.; Hattori, T. J. Phys. Chem. B 2003,  107, 8355. doi: 10.1021/jp034458+
										
				Li, L.; Li, G. -D.; Yan, C.; Mu, X. -Y.; Pan, X. -L.; Zou, X. -X.; Wang, K. -X.; Chen, J. -S. Angew. Chem. Int. Ed. 2011,  50, 8299. doi: 10.1002/anie.201102320
												 doi: 10.1002/anie.201102320
											
										
				Dietl, N.; Engeser, M.; Schwarz, H. Angew. Chem. Int. Ed. 2009,  48, 4861. doi: 10.1002/anie.200901596
												 doi: 10.1002/anie.200901596
											
										
				Copéret, C. Chem. Rev. 2010,  110, 656. doi: 10.1021/cr900122p
												 doi: 10.1021/cr900122p
											
										
				Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. J. Phys. Chem. C 2008,  112, 7223. doi: 10.1021/jp712029w
												 doi: 10.1021/jp712029w
											
										
				Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S. Nature 1994,  367, 347. doi: 10.1038/367347a0
												 doi: 10.1038/367347a0
											
										
				Li, L.; Cai, Y. -Y.; Li, G. -D.; Mu, X. -Y.; Wang, K. -X.; Chen, J. -S.; Angew. Chem. Int. Ed. 2012,  51, 4702. doi: 10.1002/anie.201200045
												 doi: 10.1002/anie.201200045
											
										
				Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C. -J. J. Am. Chem. Soc. 2014,  136, 7793. doi: 10.1021/ja5004119
												 doi: 10.1021/ja5004119
											
										
				Li, L.; Mu, X.; Liu, W.; Kong, X.; Fan, S.; Mi, Z.; Li, C. J. Angew. Chem. Int. Ed. 2014,  53, 14106. doi: 10.1002/anie.201408754
												 doi: 10.1002/anie.201408754
											
										
				Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003,  422, 599. doi: 10.1038/nature01551
												 doi: 10.1038/nature01551
											
										
				Ibbetson, J. P.; Fini, P. T.; Ness, K. D.; DenBaars, S. P.; Speck, J. S.; Mishra, U. K. Appl. Phys. Lett. 2000,  77, 250. doi: 10.1063/1.126940
												 doi: 10.1063/1.126940
											
										
				Eller, B. S.; Yang, J. L.; Nemanich, R. J. J. Electron. Mat. 2014,  43, 4560. doi: 10.1007/s11664-014-3383-z
												 doi: 10.1007/s11664-014-3383-z
											
										
				Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.; Yuan, R.; Huang, X.; Wang, X.; Wang X.; et al. Energy Environ. Sci. 2018,  11, 294. doi: 10.1056/NEJMoa1304459
												 doi: 10.1056/NEJMoa1304459
											
										
				Yu, L. H.; Shao, Y.; Li, D. Z. Appl. Catal. B-Environ. 2017,  204,  216. doi: 10.1016/j.apcatb.2016.11.039
												 doi: 10.1016/j.apcatb.2016.11.039
											
										
				Kaliaguine, S. L.; Shelimov B. N.; Kazansky, V. B. J. Catal. 1978,  55, 384. doi: 10.1016/0021-9517(78)90225-7
												 doi: 10.1016/0021-9517(78)90225-7
											
										
				Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Nat. Commun. 2016,  7, 12273. doi: 10.1038/ncomms12273
												 doi: 10.1038/ncomms12273
											
										
				Wada, K.; Yamada, H.; Watanabe Y.; Mitsudo, T. J. Chem. Soc. Faraday Trans. 1998,  94, 1771. doi: 10.1007/s10562-008-9491-8
												 doi: 10.1007/s10562-008-9491-8
											
										
				López, H. H.; Martínez, A. Catal. Lett. 2002,  83, 37. doi: 10.1023/A:1020649313699
												 doi: 10.1023/A:1020649313699
											
										
				Thampi, K. R.; Kiwi, J.; Grätzel, M. Catal. Lett. 1988,  1, 109. doi: 10.1007/BF00765891
												 doi: 10.1007/BF00765891
											
										
				Ward, M. D.; Brazdil, J. F.; Mehandru, S. P.; Anderson, A. B. J. Phys. Chem. 1987,  91, 6515.
												 doi: 10.1021/j100310a019
											
										
				Wada, K.; Yoshida, K.; Watanabe, Y. J. Chem. Soc. Faraday Trans. 1995,  91, 1647. doi: 10.1039/FT9959101647
												 doi: 10.1039/FT9959101647
											
										
				Noceti, R. P.; Taylor, C. E.; D'Este, J. R. Catal. Today 1997,  33, 199. doi: 10.1016/S0920-5861(96)00155-1
												 doi: 10.1016/S0920-5861(96)00155-1
											
										
				Villa, K.; Murcia-López, M.; Andreu, T.; Morante, J. R. Appl. Catal. B: Environ. 2015,  163, 150. doi: 10.1016/j.apcatb.2014.07.055
												 doi: 10.1016/j.apcatb.2014.07.055
											
										
				Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. ACS Catal. 2017,  7, 2878. doi: 10.1021/acscatal.6b03535
												 doi: 10.1021/acscatal.6b03535
											
										
				Hu, A. H.; Guo, J. J.; Pan, H.; Zuo, Z. W. Science 2018, doi: 10.1126/science.aat9750
												 doi: 10.1126/science.aat9750
											
										
						
						
						
	                Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
Jiayao Wang , Guixu Pan , Ning Wang , Shihan Wang , Yaolin Zhu , Yunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019