Citation: ZHANG Shuyi, BAO Jingxian, WU Bo, ZHONG Liangshu, SUN Yuhan. Research Progress on the Photocatalytic Conversion of Methane and Methanol[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 923-939. doi: 10.3866/PKU.WHXB201810002 shu

Research Progress on the Photocatalytic Conversion of Methane and Methanol

  • Corresponding author: ZHONG Liangshu, zhongls@sari.ac.cn SUN Yuhan, sunyh@sari.ac.cn
  • Received Date: 8 October 2018
    Revised Date: 21 November 2018
    Available Online: 26 September 2018

    Fund Project: National Natural Science Foundation of China 21573271National Natural Science Foundation of China 21703278"Transformational Technologies for Clean Energy and Demonstration" and Strategic Priority Research Program of the Chinese Academy of Sciences XDA21020600This work was supported by the National Key R & D Program of China 2018YFB0604700Key Research Program of Frontier Sciences, CAS QYZDB-SSW-SLH035National Natural Science Foundation of China 91545112This work was supported by the National Key R & D Program of China (2017YFB0602202, 2018YFB0604700), National Natural Science Foundation of China (21573271, 91545112, 21703278), Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH035), the "Transformational Technologies for Clean Energy and Demonstration" and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020600)This work was supported by the National Key R & D Program of China 2017YFB0602202

  • With the increasing energy demands and the limited petroleum reserves, it is highly desirable to produce fuels and chemicals from non-petroleum feedstocks, such as coal, natural gas and biomass. Catalytic conversion of C1 resources (CO, CO2, CH3OH, CH4, etc.) affords various products and attracts increasing attention from both academia and industries. Methane and methanol are important C1 feedstocks in the production of fuels and chemicals. In order to obtain high selectivity for the target product, it is necessary to control the activation of C―H bonds in methane and methanol. However, this remains a great challenge. Although the traditional thermal catalytic conversion of methane and methanol has been developed over decades, there are still some disadvantages associated with the catalytic process, such as harsh reaction conditions, high energy consumption, and low selectivity. Photocatalysis, which is driven by photoenergy, can compensate for the Gibbs free energy. In the photocatalytic reactions, semiconductor photocatalysts absorb photons and generate electrons and holes in their conduction and valence bands, respectively, to accelerate the reaction rate. The position of the conduction band determines the oxidation capacity, and the bandgap determines the light absorption property. Normally, the oxidation capacity of photocatalysts is regulated by choosing semiconductors with a suitable bandgap or anions/cations doping. Fabrication of heterojunction and loading metalsare recognized as effective methods to promote the separation of electron-hole pairs and improve the photocatalytic efficiency. In contrast to thermal catalysis, photocatalysis can be carried out under mild reaction conditions with low energy consumption. Recently, photocatalysis has been considered an attractive route for the efficient conversion of methane and methanol to fuels and chemicals. Partial oxidation of methane, which is necessary to avoid the formation of byproducts, can be achieved by adjusting the wavelength and intensity of the light and the oxidation capacity of the photocatalysts. In addition, light-induced plasmon resonance improves the efficiency of methane conversion by forming an intrinsic high-energy magnetic field that can polarize methane. In methanol conversion, the C―H bond can be selectively activated, instead of the O―H bond, by light irradiation. Therefore, C―C coupling can be realized for the production of various value-added chemicals from methanol. This review summarizes the recent advances in the photocatalytic conversion of methane and methanol including the reactions of reforming, oxidation, and coupling. Perspectives and challenges for further research on the photocatalytic conversion of methane and methanol are also discussed.
  • 加载中
    1. [1]

      Herrerias, C. I.; Yao, X.; Li, Z.; Li, C. -J. Chem. Rev. 2007, 107, 2546. doi: 10.1021/cr050980b  doi: 10.1021/cr050980b

    2. [2]

      Singh, M. K.; Akula, H. K.; Satishkumar, S.; Stahl, L.; Lakshman, M. K. ACS Catal. 2016, 6, 1921. doi: 10.1021/acscatal.5b02603  doi: 10.1021/acscatal.5b02603

    3. [3]

      Yu, J. -T.; Pan, C. Chem. Commun. 2016, 52, 2220. doi: 10.1039/c5cc08872k  doi: 10.1039/c5cc08872k

    4. [4]

      Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. Science 2016, 351, 1421. doi: 10.1126/science.aad9289  doi: 10.1126/science.aad9289

    5. [5]

      Smith, K. T.; Berritt, S.; Gonzalez-Moreiras, M.; Ahn, S.; Smith, M. R., III; Baik, M. -H.; Mindiola, D. J. Science 2016, 351, 1424. doi: 10.1126/science.aad9730  doi: 10.1126/science.aad9730

    6. [6]

      Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 3242. doi: 10.1021/acs.joc.5b00307  doi: 10.1021/acs.joc.5b00307

    7. [7]

      Warratz, S.; Burns, D. J.; Zhu, C.; Korvorapun, K.; Rogge, T.; Scholz, J.; Jooss, C.; Gelman, D.; Ackermann, L. Angew. Chem. Int. Ed. 2017, 56, 1557. doi: 10.1002/anie.201609014  doi: 10.1002/anie.201609014

    8. [8]

      Zhang, F. -L.; Hong, K.; Li, T. -J.; Park, H.; Yu, J. -Q. Science 2016, 351, 252. doi: 10.1126/science.aad7893  doi: 10.1126/science.aad7893

    9. [9]

      Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230. doi: 10.1038/nature17651  doi: 10.1038/nature17651

    10. [10]

      Liao, K. B.; Pickel, T. C.; Oyarskikh, V. B.; Acsa, J. B.; Usaev, D. G. M.; Davies, H. M. L. Nature 2017, 551, 609. doi: 10.1038/nature24641  doi: 10.1038/nature24641

    11. [11]

      Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.; Musaev, D. G.; Davies, H. M. L. Nat. Chem. 2018, 551, 609. doi: 10.1038/s41557-018-0087-7  doi: 10.1038/s41557-018-0087-7

    12. [12]

      Tzirakis, M. D.; Lykakis, I. N.; Orfanopoulos, M. Chem. Soc. Rev. 2009, 38, 2609. doi: 10.1039/B812100C  doi: 10.1039/B812100C

    13. [13]

      Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2017, 139, 11353. doi: 10.1021/jacs.7b07078  doi: 10.1021/jacs.7b07078

    14. [14]

      Capacci, A. G.; Malinowski, J. T.; McAlpine, N. J.; Kuhne, J.; MacMillan, D. W. C. Nat. Chem. 2017, 9, 1073. doi: 10.1038/nchem.2797  doi: 10.1038/nchem.2797

    15. [15]

      Maeda, H.; Takayama, H.; Segi, M. Photochem. Photobiol. Sci 2018, 17, 1118. doi: 10.1039/c8pp00239h  doi: 10.1039/c8pp00239h

    16. [16]

      Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. Science 2015, 349, 1532. doi: 10.1126/science.aac8555  doi: 10.1126/science.aac8555

    17. [17]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77. doi: 10.1126/science.1161976  doi: 10.1126/science.1161976

    18. [18]

      Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304. doi: 10.1126/science.aaf6635  doi: 10.1126/science.aaf6635

    19. [19]

      Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437. doi: 10.1126/science.1255525  doi: 10.1126/science.1255525

    20. [20]

      Xie, S.; Shen, Z.; Deng, J.; Guo, P.; Zhang, Q.; Zhang, H.; Ma, C.; Jiang, Z.; Cheng, J.; Deng, D.; et al. Nat.Commun. 2018, 9, 1181. doi: 10.1038/s41467-018-03543-y  doi: 10.1038/s41467-018-03543-y

    21. [21]

      Villa, K.; Murcia-López, S.; Morante, J. R.; Andreu, T. Appl. Catal. B 2016, 187, 30. doi: 10.1016/j.apcatb.2016.01.032  doi: 10.1016/j.apcatb.2016.01.032

    22. [22]

      Nomikos, G. N.; Panagiotopoulou, P.; Kondarides, D. I.; Verykios, X. E. Appl. Catal. B 2014, 146, 249. doi: 10.1016/j.apcatb.2013.03.018  doi: 10.1016/j.apcatb.2013.03.018

    23. [23]

    24. [24]

      Hammond, C.; Forde, M. M.; Ab Rahim, M. H.; Thetford, A.; He, Q.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Dummer, N. F.; Murphy, D. M.; et al. Angew. Chem. Int. Ed. 2012, 51, 5129. doi: 10.1002/anie.201108706  doi: 10.1002/anie.201108706

    25. [25]

      Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J.; et al. Angew. Chem. Int. Ed. 2013, 52, 1280. doi: 10.1002/anie.201207717  doi: 10.1002/anie.201207717

    26. [26]

      Forde, M. M.; Armstrong, R. D.; Hammond, C.; He, Q.; Jenkins, R. L.; Kondrat, S. A.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Willock, D.; et al. J. Am. Chem. Soc. 2013, 135, 11087. doi: 10.1021/ja403060n  doi: 10.1021/ja403060n

    27. [27]

      Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H.; et al. Science 2017, 358, 223. doi: 10.1126/science.aan6515  doi: 10.1126/science.aan6515

    28. [28]

      Liu, H.; Meng, X.; Dao, T. D.; Zhang, H.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 11545. doi: 10.1002/anie.201504933  doi: 10.1002/anie.201504933

    29. [29]

      Han, B.; Wei, W.; Chang, L.; Cheng, P.; Hu, Y. H. ACS Catal. 2015, 6, 494. doi: 10.1021/acscatal.5b02653  doi: 10.1021/acscatal.5b02653

    30. [30]

      Liu, H.; Meng, X.; Dao, T. D.; Liu, L.; Li, P.; Zhao, G.; Nagao, T.; Yang, L.; Ye, J. J. Mater. Chem. A 2017, 5, 10567. doi: 10.1039/c7ta00704c  doi: 10.1039/c7ta00704c

    31. [31]

      Pan, F.; Xiang, X.; Deng, W.; Zhao, H.; Feng, X.; Li, Y. ChemCatChem 2018, 10, 940. doi: 10.1002/cctc.201701565  doi: 10.1002/cctc.201701565

    32. [32]

      Liu, H.; Dao, T. D.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Appl. Catal. B 2017, 209, 183. doi: 10.1016/j.apcatb.2017.02.080  doi: 10.1016/j.apcatb.2017.02.080

    33. [33]

      Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. ACS Catal. 2017, 7, 2878. doi: 10.1021/acscatal.6b03535  doi: 10.1021/acscatal.6b03535

    34. [34]

      Sastre, F.; Fornes, V.; Corma, A.; Garcia, H. Chemistry 2012, 18, 1820. doi: 10.1002/chem.201102273  doi: 10.1002/chem.201102273

    35. [35]

      Hu, Y.; Anpo, M.; Wei, C. J. Photochem. Photobiol. A 2013, 264, 48. doi: 10.1016/j.jphotochem.2013.05.005  doi: 10.1016/j.jphotochem.2013.05.005

    36. [36]

      Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C. J. J. Am. Chem. Soc. 2014, 136, 7793. doi: 10.1021/ja5004119  doi: 10.1021/ja5004119

    37. [37]

      Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.-H.; Yuan, R.; Huang, X.-H.; Wang, X.; Wang, X.; et al. Energ. Environ. Sci. 2018, 11, 294. doi: 10.1039/c7ee02951a  doi: 10.1039/c7ee02951a

    38. [38]

      Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. Angew. Chem. Int. Ed. 2011, 50, 8299. doi: 10.1002/anie.201102320  doi: 10.1002/anie.201102320

    39. [39]

      Li, L.; Cai, Y. Y.; Li, G. D.; Mu, X. Y.; Wang, K. X.; Chen, J. S. Angew. Chem. Int. Ed. 2012, 51, 4702. doi: 10.1002/anie.201200045  doi: 10.1002/anie.201200045

    40. [40]

      Li, Z.; Mo, L.; Kathiraser, Y.; Kawi, S. ACS Catal. 2014, 4, 1526. doi: 10.1021/cs401027p  doi: 10.1021/cs401027p

    41. [41]

      Zhao, Y.; Kang, Y. Q.; Li, H.; Li, H. X. Green Chem. 2018, 20, 2781. doi: 10.1039/c8gc00743h  doi: 10.1039/c8gc00743h

    42. [42]

      Margossian, T.; Larmier, K.; Kim, S. M.; Krumeich, F.; Fedorov, A.; Chen, P.; Muller, C. R.; Coperet, C. J. Am. Chem. Soc. 2017, 139, 6919. doi: 10.1021/jacs.7b01625  doi: 10.1021/jacs.7b01625

    43. [43]

      Zhang, Y. X.; Dragan, A.; Geddes, C. D. J. Phys.Chem. C 2009, 113, 15811. doi: 10.1021/jp900958n  doi: 10.1021/jp900958n

    44. [44]

      Xiong, Z.; Chen, X.; Wang, X.; Peng, L.; Yan, D.; Lei, H.; Fu, Y.; Wu, J.; Li, Z.; An, X.; et al. Appl. Surf. Sci. 2013, 268, 524. doi: 10.1016/j.apsusc.2012.12.161  doi: 10.1016/j.apsusc.2012.12.161

    45. [45]

      Nagli, L.; Gaft, M.; Gornushkin, I.; Glaus, R. Opt. Commun. 2016, 378, 41. doi: 10.1016/j.optcom.2016.05.071  doi: 10.1016/j.optcom.2016.05.071

    46. [46]

      Kondratenko, V. A.; Berger-Karin, C.; Kondratenko, E. V. ACS Catal. 2014, 4, 3136. doi: 10.1021/cs5002465  doi: 10.1021/cs5002465

    47. [47]

      Park, J. H.; Kwon, Y.-i.; Nam, G. D.; Joo, J. H. J. Mater. Chem. A 2018, 6, 14246. doi: 10.1039/c8ta03021a  doi: 10.1039/c8ta03021a

    48. [48]

      Zhu, S.; Lian, X.; Fan, T.; Chen, Z.; Dong, Y.; Weng, W.; Yi, X.; Fang, W. Nanoscale 2018, 10, 14031. doi: 10.1039/c8nr02588f  doi: 10.1039/c8nr02588f

    49. [49]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035  doi: 10.1126/science.aam9035

    50. [50]

      Khan, N. A.; Kennedy, E. M.; Dlugogorski, B. Z.; Adesina, A. A.; Stockenhuber, M. Catal. Commun. 2014, 53, 42. doi: 10.1016/j.catcom.2014.04.012  doi: 10.1016/j.catcom.2014.04.012

    51. [51]

      Aslam, M.; Ismail, I. M.; Chandrasekaran, S.; Hameed, A. J. Hazard. Mater. 2014, 276, 120. doi: 10.1016/j.jhazmat.2014.05.022  doi: 10.1016/j.jhazmat.2014.05.022

    52. [52]

      Tanaka, A.; Hashimoto, K.; Kominami, H. J. Am. Chem. Soc. 2014, 136, 586. doi: 10.1021/ja410230u  doi: 10.1021/ja410230u

    53. [53]

      Hameed, A.; Ismail, I. M. I.; Aslam, M.; Gondal, M. A. Appl. Catal. A 2014, 470, 327. doi: 10.1016/j.apcata.2013.10.045  doi: 10.1016/j.apcata.2013.10.045

    54. [54]

      Li, R.; Han, H.; Zhang, F.; Wang, D.; Li, C. Energy Environ. Sci. 2014, 7, 1369. doi: 10.1039/c3ee43304h  doi: 10.1039/c3ee43304h

    55. [55]

      Ohkubo, K.; Hirose, K. Angew. Chem. Int. Ed. 2018, 57, 2126. doi: 10.1002/anie.201710945  doi: 10.1002/anie.201710945

    56. [56]

      Keller, G. E.; Bhasin, M. M. J. Catal. 1982, 73, 9. doi: 10.1016/0021-9517[82] 90075-6  doi: 10.1016/0021-9517[82]90075-6

    57. [57]

      Brady, C.; Murphy, B.; Xu, B. ACS Catal. 2017, 7, 3924. doi: 10.1021/acscatal.7b00879  doi: 10.1021/acscatal.7b00879

    58. [58]

      Liu, Y.; Li, D.; Wang, T.; Liu, Y.; Xu, T.; Zhang, Y. ACS Catal. 2016, 6, 5366. doi: 10.1021/acscatal.6b01362  doi: 10.1021/acscatal.6b01362

    59. [59]

      Okolie, C.; Lyu, Y.; Kovarik, L.; Stavitski, E.; Sievers, C. ChemCatChem 2018, 10, 2700. doi: 10.1002/cctc.201701892  doi: 10.1002/cctc.201701892

    60. [60]

      Guo, J. J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Angew. Chem. Int. Ed. 2016, 55, 15319. doi: 10.1002/anie.201609035  doi: 10.1002/anie.201609035

    61. [61]

      Hu, A.; Guo, J. J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 1612. doi: 10.1021/jacs.7b13131  doi: 10.1021/jacs.7b13131

    62. [62]

      Hu, A.; Guo, J. -J.; Pan, H.; Zuo, Z. Science 2018, 361, 668. doi: 10.1126/science.aat9750  doi: 10.1126/science.aat9750

    63. [63]

      Su, L. -W.; Li, X. -R.; Sun, Z. -Y. Energ. Policy 2013, 63, 130. doi: 10.1016/j.enpol.2013.08.031  doi: 10.1016/j.enpol.2013.08.031

    64. [64]

      Chiarello, G. L.; Aguirre, M. H.; Selli, E. J. Catal. 2010, 273, 182. doi: 10.1016/j.jcat.2010.05.012  doi: 10.1016/j.jcat.2010.05.012

    65. [65]

      Liu, Z.; Yin, Z.; Cox, C.; Bosman, M.; Qian, X.; Li, N.; Zhao, H.; Du, Y.; Li, J.; Nocera, D. G. Sci. Adv. 2016, 2, e1501425. doi: 10.1126/sciadv.1501425  doi: 10.1126/sciadv.1501425

    66. [66]

      Liu, Y.; Yang, S.; Yin, S.-N.; Feng, L.; Zang, Y.; Xue, H. Chem. Eng. J. 2018, 334, 2401. doi: 10.1016/j.cej.2017.12.016  doi: 10.1016/j.cej.2017.12.016

    67. [67]

      DePuccio, D. P.; Landry, C. C. Catal. Sci.Technol. 2016, 6, 7512. doi: 10.1039/c6cy01449f  doi: 10.1039/c6cy01449f

    68. [68]

      Liu, J.; Han, C.; Yang, X.; Gao, G.; Shi, Q.; Tong, M.; Liang, X.; Li, C. J. Catal. 2016, 333, 162. doi: 10.1016/j.jcat.2015.11.005  doi: 10.1016/j.jcat.2015.11.005

    69. [69]

      Liang, X.; Yang, X.; Gao, G.; Li, C.; Li, Y.; Zhang, W.; Chen, X.; Zhang, Y.; Zhang, B.; Lei, Y.; et al. J. Catal. 2016, 339, 68. doi: 10.1016/j.jcat.2016.03.033  doi: 10.1016/j.jcat.2016.03.033

    70. [70]

      Yang, X.; Zhang, A.; Gao, G.; Han, D.; Han, C.; Wang, J.; Lu, H.; Liu, J.; Tong, M. Catal. Commun. 2014, 43, 192. doi: 10.1016/j.catcom.2013.10.010  doi: 10.1016/j.catcom.2013.10.010

    71. [71]

      Han, C. H.; Yang, X. Z.; Gao, G. J.; Wang, J.; Lu, H. L.; Liu, J.; Tong, M.; Liang, X. Y. Green Chem. 2014, 16, 3603. doi: 10.1039/c4gc00367e  doi: 10.1039/c4gc00367e

    72. [72]

      Fan, Y. H.; Bao, J. X.; Shi, L.; Li, S. G.; Lu, Y. W.; Liu, H. J.; Wang, H.; Zhong, L. S.; Sun, Y. H. Catal. Lett. 2018, 148, 2274. doi: 10.1007/s10562-018-2465-6  doi: 10.1007/s10562-018-2465-6

    73. [73]

      Fan, Y.; Li, S.; Bao, J.; Shi, L.; Yang, Y.; Yu, F.; Gao, P.; Wang, H.; Zhong, L.; Sun, Y. Green Chem. 2018, 20, 3450. doi: 10.1039/c8gc00971f  doi: 10.1039/c8gc00971f

    74. [74]

      Chiarello, G. L.; Ferri, D.; Selli, E. J. Catal. 2011, 280, 168. doi: 10.1016/j.jcat.2011.03.013  doi: 10.1016/j.jcat.2011.03.013

    75. [75]

      Highfield, J. G.; Chen, M. H.; Nguyen, P. T.; Chen, Z. Energ. Environ. Sci. 2009, 2. doi: 10.1039/b907781m  doi: 10.1039/b907781m

    76. [76]

      Naldoni, A.; D'Arienzo, M.; Altomare, M.; Marelli, M.; Scotti, R.; Morazzoni, F.; Selli, E.; Dal Santo, V. Appl. Catal. B 2013, 130-131, 239. doi: 10.1016/j.apcatb.2012.11.006  doi: 10.1016/j.apcatb.2012.11.006

    77. [77]

      Guo, Q.; Xu, C.; Ren, Z.; Yang, W.; Ma, Z.; Dai, D.; Fan, H.; Minton, T. K.; Yang, X. J. Am. Chem. Soc. 2012, 134, 13366. doi: 10.1021/ja304049x  doi: 10.1021/ja304049x

    78. [78]

      Shen, M.; Henderson, M. A. J. Phys.Chem. C 2012, 116, 18788. doi: 10.1021/jp3046774  doi: 10.1021/jp3046774

    79. [79]

      Zhang, J.; Peng, C.; Wang, H.; Hu, P. ACS Catal. 2017, 7, 2374. doi: 10.1021/acscatal.6b03348  doi: 10.1021/acscatal.6b03348

    80. [80]

      Iwase, Y.; Kobayashi, T.; Inazu, K.; Miyaji, A.; Baba, T. Catal. Lett. 2007, 118, 146. doi: 10.1007/s10562-007-9171-0  doi: 10.1007/s10562-007-9171-0

    81. [81]

      Tang, X. C.; Zeng, Z. W.; Jiang, L. H.; Chen, L. A.; Wang, Z. M.; Jia, D. A. Z. Acta Chim. Sin. 2010, 68, 2013.

    82. [82]

      Jogunola, O.; Salmi, T.; Kangas, M.; Mikkola, J. P. Chem. Eng. J. 2012, 203, 469. doi: 10.1016/j.cej.2012.06.085  doi: 10.1016/j.cej.2012.06.085

    83. [83]

      Lu, Z.; Gao, D.; Yin, H.; Wang, A.; Liu, S. J. Ind. Eng. Chem 2015, 31, 301. doi: 10.1016/j.jiec.2015.07.002  doi: 10.1016/j.jiec.2015.07.002

    84. [84]

      Phillips, K. R.; Jensen, S. C.; Baron, M.; Li, S. C.; Friend, C. M. J. Am. Chem. Soc. 2013, 135, 574. doi: 10.1021/ja3106797  doi: 10.1021/ja3106797

    85. [85]

      Shen, Z. B.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Xie, Z. K.; Yang, W. M.; Wang, Y. D.; Lin, J. C.; Wu, X. J.; Wan, H. L.; et al. Catal. Sci.Technol. 2016, 6, 6485. doi: 10.1039/c6cy01468b  doi: 10.1039/c6cy01468b

    86. [86]

      Xie, S. J.; Shen, Z. B.; Zhang, H. M.; Cheng, J.; Zhang, Q. H.; Wang, Y. Catal. Sci. Technol. 2017, 7, 923. doi: 10.1039/c6cy02510b  doi: 10.1039/c6cy02510b

    87. [87]

      Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Angew Chem. Int. Ed. 2013, 52, 2852. doi: 10.1002/anie.201208330  doi: 10.1002/anie.201208330

    88. [88]

      Chan, L. K. M.; Poole, D. L.; Shen, D.; Healy, M. P.; Donohoe, T. J. Angew. Chem. Int. Ed. 2014, 53, 761. doi: 10.1002/anie.201307950  doi: 10.1002/anie.201307950

    89. [89]

      Liu, Z. H.; Yang, Z. Z.; Yu, X. X.; Zhang, H. Y.; Yu, B.; Zhao, Y. F.; Liu, Z. M. Org. Lett. 2017, 19, 5228. doi: 10.1021/acs.orglett.7b02462  doi: 10.1021/acs.orglett.7b02462

    90. [90]

      Zhu, C. J.; Zhang, Y. F.; Zhao, H. Q.; Huang, S. J.; Zhang, M.; Su, W. P. Adv. Synth. Catal. 2015, 357, 331. doi: 10.1002/adsc.201500006  doi: 10.1002/adsc.201500006

    91. [91]

      Yang, J.; Xie, D.; Zhou, H.; Chen, S.; Duan, J.; Huo, C.; Li, Z. Adv. Synth. Catal. 2018, 360, 3471. doi: 10.1002/adsc.201800467  doi: 10.1002/adsc.201800467

    92. [92]

      Griesbeck, A. G.; Reckenthaler, M. Beilstein J. Org. Chem. 2014, 10, 1143. doi: 10.3762/bjoc.10.114  doi: 10.3762/bjoc.10.114

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(90)
  • Abstract views(2622)
  • HTML views(941)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return