Citation: HU Yuanyuan, WANG Congyang. Bimetallic C―H Activation in Homogeneous Catalysis[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 913-922. doi: 10.3866/PKU.WHXB201809036 shu

Bimetallic C―H Activation in Homogeneous Catalysis


  • Author Bio:
    WANG Congyang obtained his B.S. degree from Nanjing University in 2000 and his Ph.D. degree from Peking University under the guidance of Prof. Zhenfeng Xi in 2005. After a postdoctoral stay in the same group, he moved to the University of Münster, Germany, working with Prof. Frank Glorius as an Alexander von Humboldt Research Fellow. In 2010, he started his independent research career at Institute of Chemistry, Chinese Academy of Sciences as a professor. In 2015, he became a joint professor at the University of Chinese Academy of Sciences (UCAS). Currently, his research interest focuses on manganese-group-metal catalysis
  • Corresponding author: WANG Congyang, wangcy@iccas.ac.cn
  • Received Date: 21 September 2018
    Revised Date: 25 October 2018
    Accepted Date: 25 October 2018
    Available Online: 29 September 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China 21521002The project was supported by the National Natural Science Foundation of China (21472194, 21772202, 21521002)The project was supported by the National Natural Science Foundation of China 21772202The project was supported by the National Natural Science Foundation of China 21472194

  • The strategy of transition-metal-catalyzed C―H activation has been greatly developed in recent years. Direct transformations of inert C―H bonds undoubtedly provide powerful ways to construct various C―C and C―X (X = heteroatom) bonds, with enhanced atom- and step-economy. Impressive efforts have been devoted to this research all along. However, concerns about reactivity and selectivity remain to be tackled, due to their strong dependence on directing groups and acidic reactive sites. In this regard, more effective catalytic systems are of great importance and therefore in high demand. Bimetallic C―H activation, by virtue of the cooperative effect, has emerged as a promising solution to this issue. The intriguing interactions between two metals with substrates afford exceptional reaction efficiency and selectivity. Intensive interest in both experimental and computational studies has been recently triggered. In this minireview, diverse bimetallic catalytic reactions are summarized into three categories according to the initiator in the C―H activation step, namely, bimetallic catalyses based on palladium, nickel, and other metals. Experimental results as well as density functional theory (DFT) calculations are invoked in the plausible mechanistic considerations. In the first part, collaborative modes based on palladium are described, in which magnesium, chromium, cobalt, and silver are successfully engaged as accessory partners. Most of them stabilize the C―H activation transition states by decreasing the energy, thus facilitating the cleavage of C―H bonds. Notably, some reactions previously reported as examples of monomeric palladium catalysis are now reinvestigated as bimetallic scenarios, in light of computational discussions. In the second part, reactions based on the synergy of nickel, and zinc or aluminum, are generalized, in which zinc or aluminum acts as a Lewis acid to increase the acidity of C―H bonds. It has been shown that the choice of different kinds of Lewis acids and ligands has a great influence on the reaction chemo-, regio-, and stereoselectivity. Gratefully, even enantioselective transformations can be achieved using the cooperation of nickel and aluminum. Moreover, a key reaction intermediate in the bimetallic C―H activation by nickel and aluminum has been isolated, providing guidance for this bimetallic catalytic system in further mechanistic studies and applications. In the last part, synergetic catalysis based on various other metals is presented. Bimetallic regimes of ruthenium/copper, rhodium/bismuth, iridium/aluminum, manganese/zinc, and zirconium/aluminum have been elegantly applied to C―H activation reactions. Multifarious action modes are proposed on account of the mechanistic research.
  • 加载中
    1. [1]

      Yu, J. Q.; Shi, Z. -J. CH Activation; Springer: Berlin, Germany, 2010.

    2. [2]

      Li, C. -J. Acc. Chem. Res. 2009, 42, 335. doi: 10.1021/ar800164n  doi: 10.1021/ar800164n

    3. [3]

      Sun, C. -L.; Li, B. -J.; Shi, Z. -J. Chem. Rev. 2011, 111, 1293. doi: 10.1021/cr100198w  doi: 10.1021/cr100198w

    4. [4]

      Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. doi: 10.1021/cr300153j  doi: 10.1021/cr300153j

    5. [5]

      Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. doi: 10.1038/nchem.1607  doi: 10.1038/nchem.1607

    6. [6]

      Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007. doi: 10.1021/acs.accounts.5b00077  doi: 10.1021/acs.accounts.5b00077

    7. [7]

      Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498. doi: 10.1021/acscatal.5b02344  doi: 10.1021/acscatal.5b02344

    8. [8]

      He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. -Q. Chem. Rev. 2017, 117, 8754. doi: 10.1021/acs.chemrev.6b00622  doi: 10.1021/acs.chemrev.6b00622

    9. [9]

      Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117, 9163. doi: 10.1021/acs.chemrev.6b00661  doi: 10.1021/acs.chemrev.6b00661

    10. [10]

      Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev. 2017, 117, 9086. doi: 10.1021/acs.chemrev.6b00772  doi: 10.1021/acs.chemrev.6b00772

    11. [11]

      Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816. doi: 10.1021/acs.accounts.8b00028  doi: 10.1021/acs.accounts.8b00028

    12. [12]

      de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004.

    13. [13]

      Sinfelt, J. H. Acc. Chem. Res. 1977, 10, 15. doi: 10.1021/ar50109a003  doi: 10.1021/ar50109a003

    14. [14]

      Sinfelt, J. H. Bimetallic Catalysis: Discoveries, Concepts and Applications; John Wiley and Sons: New York, USA, 1983.

    15. [15]

      Shibasaki, M.; Yamamoto, Y. Multimetallic Catalysts in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2004.  doi: 10.1126/science.1135941

    16. [16]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941  doi: 10.1039/b608694m

    17. [17]

      Wang, C.; Xi, Z. Chem. Soc. Rev. 2007, 36, 1395. doi: 10.1039/b608694m  doi: 10.1021/cr500208k

    18. [18]

      Buchwalter, P.; Rosé, J.; Braunstein, P. Chem. Rev. 2015, 115, 28. doi: 10.1021/cr500208k  doi: 10.1039/c6sc05556g

    19. [19]

      Mankad, N. P. Chem. Commun. 2018, 54, 1291. doi: 10.1039/c7cc09675e  doi: 10.1039/c7cc09675e

    20. [20]

      Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. doi: 10.1021/cr0200217  doi: 10.1021/cr0200217

    21. [21]

      Du Bois, J. Org. Process Res. Dev. 2011, 15, 758. doi: 10.1021/op200046v  doi: 10.1021/op200046v

    22. [22]

      Kornecki, K. P.; Briones, J. F.; Boyarshikh, V.; Fullilove, F.; Autschbach, J.; Schrote, K. E.; Lancaster, K. M.; Davies, H. M.; Berry, J. F. Science 2013, 342, 351. doi: 10.1126/science.1243200  doi: 10.1126/science.1243200

    23. [23]

      Davies, H. M. L.; Morton, D. ACS Cent. Sci. 2017, 3, 936. doi: 10.1021/acscentsci.7b00329  doi: 10.1021/acscentsci.7b00329

    24. [24]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. doi: 10.1021/cr900184e  doi: 10.1021/cr900184e

    25. [25]

      Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. doi: 10.1021/ja043273t  doi: 10.1021/ja043273t

    26. [26]

      Ricci, P.; Kr mer, K.; Cambeiro, X. C.; Larrosa, I. J. Am. Chem. Soc. 2013, 135, 13258. doi: 10.1021/ja405936s  doi: 10.1021/ja405936s

    27. [27]

      Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. doi: 10.1021/cr100280d  doi: 10.1021/cr100280d

    28. [28]

      Ricci, P.; Kr mer, K.; Larrosa, I. J. Am. Chem. Soc. 2014, 136, 18082. doi: 10.1021/ja510260j  doi: 10.1021/ja510260j

    29. [29]

      Whitaker, D.; Batuecas, M.; Ricci, P.; Larrosa, I. Chem. Eur. J. 2017, 23, 12763. doi: 10.1002/chem.201703527  doi: 10.1002/chem.201703527

    30. [30]

      Huang, G. -H.; Li, J. -M.; Huang, J. -J.; Lin, J. -D.; Chuang, G. J. Chem. Eur. J. 2014, 20, 5240. doi: 10.1002/chem.201304633  doi: 10.1002/chem.201304633

    31. [31]

      Martin, T.; Verrier, C.; Hoarau, C.; Marsais, F. Org. Lett. 2008, 10, 2909. doi: 10.1021/ol801035c  doi: 10.1021/ol801035c

    32. [32]

      Joo, J. M.; Touré, B. B.; Sames, D. J. Org. Chem. 2010, 75, 4911. doi: 10.1021/jo100727j  doi: 10.1021/jo100727j

    33. [33]

      Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J.; Wilson, J. E. Org. Lett. 2010, 12, 3578. doi: 10.1021/ol1011778  doi: 10.1021/ol1011778

    34. [34]

      Théveau, L.; Verrier, C.; Lassalas, P.; Martin, T.; Dupas, G.; Querolle, O.; Hijfte, L. V.; Marsais, F.; Hoarau, C. Chem. Eur. J. 2011, 17, 14450. doi: 10.1002/chem.201101615  doi: 10.1002/chem.201101615

    35. [35]

      Zhu, F.; Wang, Z. -X. Org. Lett. 2015, 17, 1601. doi: 10.1021/acs.orglett.5b00510  doi: 10.1021/acs.orglett.5b00510

    36. [36]

      Kokornaczyk, A.; Schepmann, D.; Yamaguchi, J.; Itami, K.; Wünsch, B. Med. Chem. Commun. 2016, 7, 327. doi: 10.1039/C5MD00526D  doi: 10.1039/C5MD00526D

    37. [37]

      Hu, L. -Q.; Deng, R. -L.; Li, Y. -F.; Zeng, C. -J.; Shen, D. -S.; Liu, F. -S. Organometallics 2018, 37, 214. doi: 10.1021/acs.organomet.7b00784  doi: 10.1021/acs.organomet.7b00784

    38. [38]

      Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467. doi: 10.1246/bcsj.71.467  doi: 10.1246/bcsj.71.467

    39. [39]

      Kondo, Y.; Komine, T.; Sakamoto, T. Org. Lett. 2000, 2, 3111. doi: 10.1021/ol000183u  doi: 10.1021/ol000183u

    40. [40]

      Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.; Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003, 125, 1700. doi: 10.1021/ja0289189  doi: 10.1021/ja0289189

    41. [41]

      Bellina, F.; Cauteruccio, S.; Fiore, A. D.; Marchetti, C.; Rossi, R. Tetrahedron 2008, 64, 6060. doi: 10.1016/j.tet.2008.01.051  doi: 10.1016/j.tet.2008.01.051

    42. [42]

      Tani, S.; Uehara, T. N.; Yamaguchi, J.; Itami, K. Chem. Sci. 2014, 5, 123. doi: 10.1039/C3SC52199K  doi: 10.1039/C3SC52199K

    43. [43]

      Gorelsky, S. I. Organometallics 2012, 31, 794. doi: 10.1021/om2012612  doi: 10.1021/om2012612

    44. [44]

      Oh, K. H.; Kim, S. M.; Lee, M. J.; Park, J. K. Adv. Synth. Catal. 2015, 357, 3927. doi: 10.1002/adsc.201500726  doi: 10.1002/adsc.201500726

    45. [45]

      Leow, D.; Li, G.; Mei, T. -S.; Yu, J. -Q. Nature 2012, 486, 518. doi: 10.1038/nature11158  doi: 10.1038/nature11158

    46. [46]

      Yang, Y. -F.; Cheng, G. -J.; Liu, P.; Leow, D.; Sun, T. -Y.; Chen, P.; Zhang, X.; Yu, J. -Q.; Wu, Y. -D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344. doi: 10.1021/ja410485g  doi: 10.1021/ja410485g

    47. [47]

      Fang, L.; Saint-Denis, T. G.; Taylor, B. L. H.; Ahlquist, S.; Hong, K.; Liu, S.; Han, L.; Houk, K. N.; Yu, J. -Q. J. Am. Chem. Soc. 2017, 139, 10702. doi: 10.1021/jacs.7b03296  doi: 10.1021/jacs.7b03296

    48. [48]

      Anand, M.; Sunoj, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2014, 136, 5535. doi: 10.1021/ja412770h  doi: 10.1021/ja412770h

    49. [49]

      Yoo, E. J.; Ma, S.; Mei, T. -S.; Chan, K. S. L.; Yu, J. -Q. J. Am. Chem. Soc. 2011, 133, 7652. doi: 10.1021/ja202563w  doi: 10.1021/ja202563w

    50. [50]

      Anand, M.; Sunoj, R. B.; Schaefer, H. F. ACS Catal. 2016, 6, 696. doi: 10.1021/acscatal.5b02639  doi: 10.1021/acscatal.5b02639

    51. [51]

      Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544. doi: 10.1021/ja00893a040  doi: 10.1021/ja00893a040

    52. [52]

      Clement, N. D.; Cavell, K. J. Angew. Chem. Int. Ed. 2004, 43, 3845. doi: 10.1002/anie.200454166  doi: 10.1002/anie.200454166

    53. [53]

      Kanyiva K. S.; Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2007, 46, 8872. doi: 10.1002/anie.200703758  doi: 10.1002/anie.200703758

    54. [54]

      Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070. doi: 10.1021/ja9053509  doi: 10.1021/ja9053509

    55. [55]

      Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2010, 49, 2202. doi: 10.1002/anie.200906996  doi: 10.1002/anie.200906996

    56. [56]

      Vechorkin, O.; Proust, V.; Hu, X. Angew. Chem. Int. Ed. 2010, 49, 3061. doi: 10.1002/anie.200907040  doi: 10.1002/anie.200907040

    57. [57]

      Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2012, 51, 775. doi: 10.1002/anie.201106825  doi: 10.1002/anie.201106825

    58. [58]

      Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573. doi: 10.1021/ja306062c  doi: 10.1021/ja306062c

    59. [59]

      Nett. A. J.; Zhao, W.; Zimmerman, P. M.; Montgomery, J. J. Am. Chem. Soc. 2015, 137, 7636. doi: 10.1021/jacs.5b04548  doi: 10.1021/jacs.5b04548

    60. [60]

      Misal Castro, L. C.; Chatani, N. Chem. Lett. 2015, 44, 410. doi: 10.1246/cl.150024  doi: 10.1246/cl.150024

    61. [61]

      Zhan, B.; Liu, B.; Hu, F.; Shi, B. Chin. Sci. Bull. 2015, 60, 2907. doi: 10.1360/N972015-00389  doi: 10.1360/N972015-00389

    62. [62]

      Yang, X.; Shan, G.; Wang, L.; Rao, Y. Tetrahedron Lett. 2016, 57, 819. doi: 10.1016/j.tetlet.2016.01.009  doi: 10.1016/j.tetlet.2016.01.009

    63. [63]

      Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448. doi: 10.1021/ja710766j  doi: 10.1021/ja710766j

    64. [64]

      Tsai, C. -C.; Shih, W. -C.; Fang, C. -H.; Li, C. -Y.; Ong, T. -G.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887. doi: 10.1021/ja1061246  doi: 10.1021/ja1061246

    65. [65]

      Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666. doi: 10.1021/ja106514b  doi: 10.1021/ja106514b

    66. [66]

      Lee, W. -C.; Chen, C. -H.; Liu, C. -Y.; Yu, M. -S.; Lin, Y. -H.; Ong, T. -G. Chem. Commun. 2015, 51, 17104. doi: 10.1039/C5CC07455J  doi: 10.1039/C5CC07455J

    67. [67]

      Shih, W. -C.; Chen, W. -C.; Lai, Y. -C.; Yu, M. -S.; Ho, J. -J.; Yap, G. P. A.; Ong, T. -G. Org. Lett. 2012, 14, 2046. doi: 10.1021/ol300570f  doi: 10.1021/ol300570f

    68. [68]

      Lee, W. -C.; Wang, C. -H.; Lin, Y. -H.; Shih, W. -C.; Ong, T. -G. Org. Lett. 2013, 15, 5358. doi: 10.1021/ol402644y  doi: 10.1021/ol402644y

    69. [69]

      Liu, S.; Sawicki, J.; Driver, T. G. Org. Lett. 2012, 14, 3744. doi: 10.1021/ol301606y  doi: 10.1021/ol301606y

    70. [70]

      Yu, M. -S.; Lee, W. -C.; Chen, C. -H.; Tsai, F. -Y.; Ong, T. -G. Org. Lett. 2014, 16, 4826. doi: 10.1021/ol502314p  doi: 10.1021/ol502314p

    71. [71]

      Inoue, F.; Saito, T.; Semba, K.; Nakao, Y. Chem. Commun. 2017, 53, 4497. doi: 10.1039/C7CC00852J  doi: 10.1039/C7CC00852J

    72. [72]

      Okumura, S.; Nakao, Y. Asian J. Org. Chem. 2018, 7, 1355. doi: 10.1002/ajoc.201800208  doi: 10.1002/ajoc.201800208

    73. [73]

      Wang, Y. -X.; Qi, S. -L.; Luan, Y. -X.; Han, X. -W.; Wang, S.; Chen, H.; Ye, M. J. Am. Chem. Soc. 2018, 140, 5360. doi: 10.1021/jacs.8b02547  doi: 10.1021/jacs.8b02547

    74. [74]

      Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 15996. doi: 10.1021/ja907214t  doi: 10.1021/ja907214t

    75. [75]

      Tamura, R.; Yamada, Y.; Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2012, 51, 5679. doi: 10.1002/anie.201200922  doi: 10.1002/anie.201200922

    76. [76]

      Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2015, 54, 633. doi: 10.1002/anie.201409669  doi: 10.1002/anie.201409669

    77. [77]

      Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 5070. doi: 10.1021/ja901153s  doi: 10.1021/ja901153s

    78. [78]

      Nakao, Y.; Morita, E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc. 2011, 133, 3264. doi: 10.1021/ja1102037  doi: 10.1021/ja1102037

    79. [79]

      Donets, P. A.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 11772. doi: 10.1021/ja406730t  doi: 10.1021/ja406730t

    80. [80]

      Okumura, S.; Tang, S.; Saito, T.; Semba, K.; Sakaki, S.; Nakao, Y. J. Am. Chem. Soc. 2016, 138, 14699. doi: 10.1021/jacs.6b08767  doi: 10.1021/jacs.6b08767

    81. [81]

      Okumura, S.; Nakao, Y. Org. Lett. 2017, 19, 584. doi: 10.1021/acs.orglett.6b03741  doi: 10.1021/acs.orglett.6b03741

    82. [82]

      Okumura, S.; Komine, T.; Shigeki, E.; Semba, K.; Nakao, Y. Angew. Chem. Int. Ed. 2018, 57, 929. doi: 10.1002/anie.201710520  doi: 10.1002/anie.201710520

    83. [83]

      Louillat, M.; Patureau, F. W. Org. Lett. 2013, 15, 164. doi: 10.1021/ol303216u  doi: 10.1021/ol303216u

    84. [84]

      Dikarev, E. V.; Gray, T. G.; Li, B. Angew. Chem. Int. Ed. 2005, 44, 1721. doi: 10.1002/anie.200462433  doi: 10.1002/anie.200462433

    85. [85]

      Dikarev, E. V.; Li, B.; Zhang, H. T. J. Am. Chem. Soc. 2006, 128, 2814. doi: 10.1021/ja058294h  doi: 10.1021/ja058294h

    86. [86]

      Durivage, J. C.; Gruhn, N. E.; Li, B.; Dikarev, E. V.; Lichtenberger, D. L. J. Cluster Sci. 2008, 19, 275. doi: 10.1007/s10876-007-0179-9  doi: 10.1007/s10876-007-0179-9

    87. [87]

      Hansen, J.; Li, B.; Dikarev, E.; Autschbach, J.; Davies, H. M. L. J. Org. Chem. 2009, 74, 6564. doi: 10.1021/jo900998s  doi: 10.1021/jo900998s

    88. [88]

      Yang, L.; Semba, K.; Nakao, Y. Angew. Chem. Int. Ed. 2017, 56, 4853. doi: 10.1002/anie.201701238  doi: 10.1002/anie.201701238

    89. [89]

      Hu, Y.; Zhou, B.; Chen, H.; Wang, C. Angew. Chem. Int. Ed. 2018, 57, 12071. doi: 10.1002/anie.201806287  doi: 10.1002/anie.201806287

    90. [90]

      Zhou, B.; Hu, Y.; Liu, T.; Wang, C. Nat. Commun. 2017, 8, 1169. doi: 10.1038/s41467-017-01262-4  doi: 10.1038/s41467-017-01262-4

    91. [91]

      Zhou, B.; Hu, Y.; Wang, C. Angew. Chem. Int. Ed. 2015, 54, 13659. doi: 10.1002/anie.201506187  doi: 10.1002/anie.201506187

    92. [92]

      Negishi, E.; Kondakov, D. Y.; Choueiry, D.; Kasai, K.; Takahashi, T. J. Am. Chem. Soc. 1996, 118, 9577. doi: 10.1021/ja9538039  doi: 10.1021/ja9538039

  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(10)
  • Abstract views(444)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return