Citation: LIU Xinke, WANG Jiale, XU Chuyu, LUO Jiangliu, LIANG Disi, CEN Yunuo, L Youming, LI Zhiwen. Temperature-Dependent Phonon Shifts in Mono-layer, Few-layer, and Bulk WS2 Films[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1134-1141. doi: 10.3866/PKU.WHXB201809013 shu

Temperature-Dependent Phonon Shifts in Mono-layer, Few-layer, and Bulk WS2 Films

  • Corresponding author: LI Zhiwen, lizhiwen2017@email.szu.edu.cn
  • Received Date: 10 September 2018
    Revised Date: 12 October 2018
    Accepted Date: 11 November 2018
    Available Online: 5 October 2018

    Fund Project: Natural Science Foundation of SZU, China 000062Natural Science Foundation of Guangdong Province, China 2016 A030313060The project was supported by the National Key Research and Development Plan (2017YFB0403000), the National Natural Science Foundation of China (61504083), the Public Welfare Capacity Building in Guangdong Province, China (2015A010103016), the Science and Technology Foundation of Shenzhen, China (JCYJ20160226192033020), the Natural Science Foundation of Guangdong Province, China (2016A030313060), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (2017A030310424), the Natural Science Foundation of SZU, China (000062), and the National Taipei University of Technology-Shenzhen University Joint Research Program, China (2018001)Public Welfare Capacity Building in Guangdong Province, China 2015A010103016National Taipei University of Technology-Shenzhen University Joint Research Program, China 2018001PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China 2017A030310424Science and Technology Foundation of Shenzhen, China JCYJ20160226192033020National Natural Science Foundation of China 61504083The project was supported by the National Key Research and Development Plan 2017YFB0403000

  • Two-dimensional transition metal disulfides (TMDs) have recently attracted significant research attention due to their rich physical and chemical properties. Graphene has also been studied intensively due to its high electron mobility of ~200000 cm2·V−1·s−1. Since there is no band gap, it is difficult for a graphene-based device to achieve high current on/off ratio. For TMDs, such as MoS2, MoSe2, WSe2, and WS2, the band gaps of these materials can be adjusted according to the number of layers. Since TMD has the advantage of suppressing source-drain tunneling current in an ultra-short transistor and offering superior immunity to short-channel effects, it is also attractive for use as a channel material in Si complementary metal oxide semiconductor (CMOS) devices larger than 22 nm. Among them, MoS2 in single-layer and multi-layer films have been intensively researched for many years. MoS2-based field effect transistors (FETs) with excellent electrical properties have been reported. WS2 has lower in-plane electronic mass than MoS2, MoSe2, and MoTe2, and therefore has potential for higher carrier mobility or higher output current for WS2-based FETs. Experimental research on WS2 is limited compared to MoS2, and more work is needed to further exploit the full potential of WS2-based FETs. Therefore, the electron-phonon interaction and vibration properties of WS2 used in nano-electronic applications and FETs must be investigated. To this end, mono-layer (1L), few-layer (FL), and bulk WS2 films were prepared using mechanical exfoliation from a WS2 crystal. 3M scotch-tape was used for transferring the WS2 films. Detailed temperature-dependent Raman study on 1L, FL, and bulk WS2 films has been conducted using a 514-nm excitation laser. Raman spectroscopy, as an effective and non-destructive approach for phonon vibration study, has been used to evaluate TMDs. The Raman spectra reveal much useful information on the test sample in terms of peak position and spectral shape change. With the film thickness increasing to bulk, the A1g(Γ) and E2g1(Γ) modes show blue-shift and red-shift, respectively, with respect to 1L WS2. Moreover, when the dominant Raman vibration modes swaps between E2g1(Γ) and A1g(Γ), the "cross-over" temperature was identified for 1L, FL, and bulk WS2 films. WS2 shows smaller frequency change Δ between the E2g1(Γ) and A1g(Γ) modes than MoS2, with varying film thickness. The temperature coefficient of the Raman peak position was one magnitude lower for WS2 than MoS2, implying that WS2 has better thermal stability than MoS2. The results of this systematic study provide a physical guidance for WS2-based device design.
  • 加载中
    1. [1]

      Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. Angew. Chem. Int. Edit. 2010, 49 (24), 4059. doi: 10.1002/anie.201000009  doi: 10.1002/anie.201000009

    2. [2]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat. Nanotech. 2012, 7, 699. doi: 10.1038/nnano.2012.193  doi: 10.1038/nnano.2012.193

    3. [3]

      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (30), 10451. doi: 10.1073/pnas.0502848102  doi: 10.1073/pnas.0502848102

    4. [4]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589  doi: 10.1038/nchem.1589

    5. [5]

      Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S.; et al. Adv. Funct. Mater. 2013, 23 (44), 5511. doi: 10.1002/adfm.201300760  doi: 10.1002/adfm.201300760

    6. [6]

      Mak K F, He K, Shan J, Heinz T F. Nat. Nanotech. 2012, 7, 494. doi: 10.1038/nnano.2012.96  doi: 10.1038/nnano.2012.96

    7. [7]

      Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Nat. Nanotech. 2012, 7, 490. doi: 10.1038/nnano.2012.95  doi: 10.1038/nnano.2012.95

    8. [8]

      Wu, S.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z.; Zhu, W.; Xiao, D.; Yao, W.; Cobden, D.; et al. Nat. Phys. 2013, 9, 149. doi: 10.1038/nphys2524  doi: 10.1038/nphys2524

    9. [9]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    10. [10]

      Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146 (9), 351. doi: 10.1016/j.ssc.2008.02.024  doi: 10.1016/j.ssc.2008.02.024

    11. [11]

      Han, M. Y.; zyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98 (20), 206805. doi: 10.1103/PhysRevLett.98.206805  doi: 10.1103/PhysRevLett.98.206805

    12. [12]

      Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Science 2008, 319 (5867), 1229. doi: 10.1126/science.1150878  doi: 10.1126/science.1150878

    13. [13]

      Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820. doi: 10.1038/nature08105  doi: 10.1038/nature08105

    14. [14]

      Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877. doi: 10.1038/nature07919  doi: 10.1038/nature07919

    15. [15]

      Sols, F.; Guinea, F. Neto, A. H. C. Phys. Rev. Lett. 2007, 99 (16), 166803. doi: 10.1103/PhysRevLett.99.166803  doi: 10.1103/PhysRevLett.99.166803

    16. [16]

      Yoon, Y.; Guo, J. Appl. Phys. Lett. 2007, 91 (7), 073103. doi: 10.1063/1.2769764  doi: 10.1063/1.2769764

    17. [17]

      Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 5143. doi: 10.1038/ncomms6143  doi: 10.1038/ncomms6143

    18. [18]

      Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 2011, 11 (9), 3768. doi: 10.1021/nl2018178  doi: 10.1021/nl2018178

    19. [19]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotech. 2011, 6, 147. doi: 10.1038/nnano.2010.279  doi: 10.1038/nnano.2010.279

    20. [20]

      Radisavljevic, B.; Kis, A. Nat. Mater. 2013, 12, 815. doi: 10.1038/nmat3687  doi: 10.1038/nmat3687

    21. [21]

      Schmidt, H.; Wang, S.; Chu, L.; Toh, M.; Kumar, R.; Zhao, W.; Castro Neto, A. H.; Martin, J.; Adam, S.; zyilmaz, B. Eda G. Nano Lett. 2014, 14 (4), 1909. doi: 10.1021/nl4046922  doi: 10.1021/nl4046922

    22. [22]

      Ghatak, S.; Pal, A. N.; Ghosh, A. ACS Nano 2011, 5 (10), 7707. doi: 10.1021/nn202852j  doi: 10.1021/nn202852j

    23. [23]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/nmat4091  doi: 10.1038/nmat4091

    24. [24]

      Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller. J. Nano Lett. 2013, 13 (1), 100. doi:10.1021/nl303583v  doi: 10.1021/nl303583v

    25. [25]

      Bikorimana, S.; Lama, P.; Walser, A.; Dorsinville, R.; Anghel, S.; Mitioglu, A.; Micu, A.; Kulyuk, L. Opt. Express. 2016, 24 (18), 20685. doi: 10.1364/OE.24.020685  doi: 10.1364/OE.24.020685

    26. [26]

      Gu, H.; Chen, L.; Lu, Y., Tian, F.; Zhang, Z., Xu, K.; Wu, J.; Divakar, V. B.; Li, K., Liu, L. Jpn. J. Appl. Phys. 2018, 57 (6), 060309. doi: 10.7567/JJAP.57.060309  doi: 10.7567/JJAP.57.060309

    27. [27]

      Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. IEEE T. Electron Dev. 2011, 58 (9), 3042. doi: 10.1109/TED.2011.2159221  doi: 10.1109/TED.2011.2159221

    28. [28]

      Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. ACS Nano 2014, 8 (8), 8174. doi: 10.1021/nn502362b  doi: 10.1021/nn502362b

    29. [29]

      Liu, X.; Hu, J.; Yue, C.; Della Fera, N.; Ling, Y.; Mao, Z.; Wei, J. ACS Nano 2014, 8 (10), 10396. doi: 10.1021/nn505253p  doi: 10.1021/nn505253p

    30. [30]

      Kim, Y. J.; Park, W.; Yang, J. H.; Kim, Y.; Lee, B. H. IEEE J. Electron Devi. 2018, 6, 164. doi: 10.1109/JEDS.2017.2781250  doi: 10.1109/JEDS.2017.2781250

    31. [31]

      Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Nano Lett. 2007, 7 (9), 2645. doi: 10.1021/nl071033g  doi: 10.1021/nl071033g

    32. [32]

      Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phys. Rev. B 2012, 85 (11), 115317. doi: 10.1103/PhysRevB.85.115317  doi: 10.1103/PhysRevB.85.115317

    33. [33]

      Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4 (5), 2695. doi: 10.1021/nn1003937  doi: 10.1021/nn1003937

    34. [34]

      Thripuranthaka, M.; Late, D. J. ACS Appl. Mater. Inter. 2014, 6 (2), 1158. doi: 10.1021/am404847d  doi: 10.1021/am404847d

    35. [35]

      Thripuranthaka, M.; Kashid, R. V.; Rout, C. S.; Late, D. J. Appl. Phys. Lett. 2014, 104 (8), 081911. doi: 10.1063/1.4866782  doi: 10.1063/1.4866782

    36. [36]

      Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Nano Lett. 2013, 13 (8), 3447. doi: 10.1021/nl3026357  doi: 10.1021/nl3026357

    37. [37]

      Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C.; et al. Sci. Rep. 2013, 3, 1755. doi: 10.1038/srep01755  doi: 10.1038/srep01755

    38. [38]

      Peimyoo, N.; Shang, J.; Yang, W.; Wang, Y.; Cong, C.; Yu, T. Nano Res. 2015, 8 (4), 1210. doi: 10.1007/s12274-014-0602-0  doi: 10.1007/s12274-014-0602-0

    39. [39]

      Lanzillo, N. A.; Birdwell, A. G.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M.; et al. Appl. Phys. Lett. 2013, 103 (9), 093102. doi: 10.1063/1.4819337  doi: 10.1063/1.4819337

    40. [40]

      Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. J. Phys. Chem. C 2013, 117 (17), 9042. doi: 10.1021/jp402509w  doi: 10.1021/jp402509w

    41. [41]

      Najmaei, S.; Ajayan, P. M.; Lou, J. Nanoscale 2013, 5 (20), 9758. doi: 10.1039/C3NR02567E  doi: 10.1039/C3NR02567E

    42. [42]

      Feng, X.; Kulish, V. V.; Wu, P.; Liu, X.; Ang, K. W. Nano Res. 2016, 9 (9), 2687. doi: 10.1007/s12274-016-1156-0  doi: 10.1007/s12274-016-1156-0

  • 加载中
    1. [1]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    2. [2]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    3. [3]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    4. [4]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    5. [5]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    6. [6]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    7. [7]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    8. [8]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    11. [11]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    15. [15]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    16. [16]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    19. [19]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    20. [20]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

Metrics
  • PDF Downloads(15)
  • Abstract views(667)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return