Citation: WANG Dan, DING Xunlei, LIAO Henglu, DAI Jiayu. Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 1005-1013. doi: 10.3866/PKU.WHXB201809006 shu

Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters

  • Corresponding author: DING Xunlei, dingxl@ncepu.edu.cn DAI Jiayu, jydai@nudt.edu.cn
  • Received Date: 4 September 2018
    Revised Date: 15 October 2018
    Accepted Date: 15 October 2018
    Available Online: 18 September 2018

    Fund Project: the Science and Technology Project of Hunan Province, China 2017RS3038The project was supported by the National Natural Science Foundation of China (91545122, 11774429), the Science and Technology Project of Hunan Province, China (2017RS3038) and the Fundamental Research Funds for the Central Universities, China (JB2015RCY03)The project was supported by the National Natural Science Foundation of China 91545122The project was supported by the National Natural Science Foundation of China 11774429the Fundamental Research Funds for the Central Universities, China JB2015RCY03

  • The activation of methane (CH4) is a key step in its conversion to more valuable products. The activation mechanisms of CH4 on catalyst surfaces have been widely studied using gas-phase cluster models, which can be operated on systems with a precise number of atoms and determined structures. Herein, we have used MV3Oyq (M = Au/Ag, y = 6–8, q = 0 or ±1) clusters, in which a single Au or Ag atom was supported on vanadium oxide clusters, as simple models to mimic the properties of newly developed single-atom catalysts. The adsorption and activation of CH4 on these MV3Oyq clusters were systematically studied via density functional theory calculations at the B3LYP/Def2-TZVP level, which provided insights into the geometric structures, adsorption energies, and charge distributions of the adsorption systems. Five Au-containing clusters, AuV3O6, AuV3O7, AuV3O8, AuV3O6+, and AuV3O7+, were able to activate CH4, while other clusters, including all Ag-containing clusters, were inert. In the active clusters, all Au atoms were adsorbed on the O-atom sites of the supporting V3Oyq cluster and served as the active sites for CH4 activation. The activation of CH4 was characterized by the lengthened C―H bond (approximately 115 pm), short distances between CH4 and Au (approximately 184 pm), relatively high adsorption energies of CH4 (~0.590–1.145 eV), and significant electron transfer from CH4 to the clusters (above 0.08e). In particular, AuV3O8, which is a neutral cluster with a close-shell electronic state, can activate CH4 with a C―H bond length of 115 pm, Au―H bond length of 183 pm, the adsorption energy of CH4 of 0.853 eV, and the charge on CH4 of +0.088e. The charge state of the cluster has a significant effect on the activation ability: cationic clusters are the most active, followed by neutral clusters, while anionic clusters have the lowest activities toward CH4. Consistently, the local charge on the M atom has a positive correction with the activation ability of MV3Oyq clusters with a certain M. However, as compared to Au-containing clusters, Ag-containing clusters have lower activities despite the higher local charges on Ag in each MV3Oyq cluster. The results indicate that the inclusion of D3 dispersion correction has a small effect on structures and energies. This study may serve as a foundation for further research on the activation of CH4 on single-atom catalysts and provides useful information on rational designing of single-atom catalysts for CH4 conversion at low temperatures.
  • 加载中
    1. [1]

      Mundhwa, M.; Thurgood, C. P. Fuel Process. Technol. 2017, 168, 27. doi: 10.1016/j.fuproc.2017.08.031  doi: 10.1016/j.fuproc.2017.08.031

    2. [2]

      Dang, T. T. H.; Seeburg, D.; Radnik, J.; Kreyenschulte, C.; Atia, H.; Vu, T. T. H.; Wohlrab, S. Catal. Commun. 2018, 103, 56. doi: 10.1016/j.catcom.2017.09.004  doi: 10.1016/j.catcom.2017.09.004

    3. [3]

      Burch, R.; Chalker, S.; Loader, P.; Thomas, J. M.; Ueda, W. Appl. Catal. A: Gen. 1992, 82, 77. doi: 10.1016/0926-860X(92)80007-Y  doi: 10.1016/0926-860X(92)80007-Y

    4. [4]

      Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424  doi: 10.1002/anie.201006424

    5. [5]

      Tang, W.; Hu, Z.; Wang, M.; Stucky, G. D.; Metiu, H.; McFarland, E. W. J. Catal. 2010, 273, 125. doi: 10.1016/j.jcat.2010.05.005  doi: 10.1016/j.jcat.2010.05.005

    6. [6]

      Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Nature 1991, 352, 225. doi: 10.1038/352225a0  doi: 10.1038/352225a0

    7. [7]

      Enger, B. C.; Lodeng, R.; Holmen, A. Appl. Catal. A: Gen. 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018  doi: 10.1016/j.apcata.2008.05.018

    8. [8]

      Zhu, Q.; Zhao, X.; Deng, Y. J. Nat. Gas Chem. 2004, 13, 191.

    9. [9]

      Bawornruttanaboonya, K.; Devahastin, S.; Mujumdar, A. S.; Laosiripojana, N. Int. J. Heat Mass Tran. 2017, 115, 174. doi: 10.1016/j.ijheatmasstransfer.2017.08.027  doi: 10.1016/j.ijheatmasstransfer.2017.08.027

    10. [10]

      Chai, R. J.; Zhang, Z. Q.; Chen, P. J.; Zhao, G. F.; Liu, Y.; Lu, Y. Microporous Mesoporous Mat. 2017, 253, 123. doi: 10.1016/j.micromeso.2017.07.005  doi: 10.1016/j.micromeso.2017.07.005

    11. [11]

      Cihlar, J.; Vrba, R.; Castkova, K.; Cihlar, J. Int. J. Hydrog. Energy 2017, 42, 19920. doi: 10.1016/j.ijhydene.2017.06.075  doi: 10.1016/j.ijhydene.2017.06.075

    12. [12]

      Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M. ChemCatChem 2011, 3, 1935. doi: 10.1002/cctc.201100186  doi: 10.1002/cctc.201100186

    13. [13]

      Wei, Q. H.; Gao, X. H.; Liu, G. G.; Yang, R. Q.; Zhang, H. B.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. Fuel 2018, 211, 1. doi: 10.1016/j.fuel.2017.08.093  doi: 10.1016/j.fuel.2017.08.093

    14. [14]

      Wang, S.; Gao, D. N.; Zhang, C. X.; Yuan, Z. S.; Zhang, P.; Wang, S. D. Prog. Chem. 2008, 20, 789.

    15. [15]

      Gao, J.; Guo, J. Z.; Liang, D.; Hou, Z. Y.; Fei, J. H.; Zheng, X. M. Int. J. Hydrog. Energy 2008, 33, 5493. doi: 10.1016/j.ijhydene.2008.07.040  doi: 10.1016/j.ijhydene.2008.07.040

    16. [16]

      Tompos, A.; Margitfalvi, J. L.; Hegedus, M.; Szegedi, A.; Fierro, J. L. G.; Rojas, S. Comb. Chem. High T. Scr. 2007, 10, 71. doi: 10.2174/138620707779802841  doi: 10.2174/138620707779802841

    17. [17]

      Launay, H.; Loridant, S.; Nguyen, D. L.; Volodin, A. M.; Dubois, J. L.; Millet, J. M. M. Catal. Today 2007, 128, 176. doi: 10.1016/j.cattod.2007.07.014  doi: 10.1016/j.cattod.2007.07.014

    18. [18]

      Wang, X.; Qi, G.; Xu, J.; Li, B.; Wang, C.; Deng, F. Angew. Chem. Int. Ed. 2012, 51, 3850. doi: 10.1002/anie.201108634  doi: 10.1002/anie.201108634

    19. [19]

      He, J. L.; Xu, T.; Wang, Z. H.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Angew. Chem. Int. Ed. 2012, 51, 2438. doi: 10.1002/anie.201104071  doi: 10.1002/anie.201104071

    20. [20]

      Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    21. [21]

      Schlangen, M.; Schwarz, H. Catal. Lett. 2012, 142, 1265. doi: 10.1007/s10562-012-0892-3  doi: 10.1007/s10562-012-0892-3

    22. [22]

      Lang, S. M.; Frank, A.; Bernhardt, T. M. J. Phys. Chem. C 2013, 117, 9791. doi: 10.1021/jp312852r  doi: 10.1021/jp312852r

    23. [23]

      Zhou, S.; Yue, L.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Ed. 2017, 56, 14297. doi: 10.1002/anie.201704979  doi: 10.1002/anie.201704979

    24. [24]

      Schwarz, H.; Shaik, S.; Li, J. J. Am. Chem. Soc. 2017, 139, 17201. doi: 10.1021/jacs.7b10139  doi: 10.1021/jacs.7b10139

    25. [25]

      Ding, X. L.; Wu, X. N.; Zhao, Y. X.; He, S. G. Acc. Chem. Res. 2012, 45, 382. doi: 10.1021/ar2001364  doi: 10.1021/ar2001364

    26. [26]

      Zhao, Y. X.; Wu, X. N.; Ma, J. B.; He, S. G.; Ding, X. L. Phys. Chem. Chem. Phys. 2011, 13, 1925. doi: 10.1039/c0cp01171a  doi: 10.1039/c0cp01171a

    27. [27]

      Ding, X. L.; Zhao, Y. X.; Wu, X. N.; Wang, Z. C.; Ma, J. B.; He, S. G. Chem. Eur. J. 2010, 16, 11463. doi: 10.1002/chem.201001297  doi: 10.1002/chem.201001297

    28. [28]

      Wu, X. N.; Ding, X. L.; Li, Z. Y.; Zhao, Y. X.; He, S. G. J. Phys. Chem. C 2014, 118, 24062. doi: 10.1021/jp5059403  doi: 10.1021/jp5059403

    29. [29]

      Lang, S. M.; Bernhardt, T. M.; Chernyy, V.; Bakker, J. M.; Barnett, R. N.; Landman, U. Angew. Chem. Int. Ed. 2017, 56, 13406. doi: 10.1002/anie.201706009  doi: 10.1002/anie.201706009

    30. [30]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/Nchem.1095  doi: 10.1038/Nchem.1095

    31. [31]

      Zhou, X.; Shen, Q.; Yuan, K.; Yang, W.; Chen, Q.; Geng, Z.; Zhang, J.; Shao, X.; Chen, W.; Xu, G.; et al. J. Am. Chem. Soc. 2018, 140, 554. doi: 10.1021/jacs.7b10394  doi: 10.1021/jacs.7b10394

    32. [32]

      Sun, W.; Shi, R. N.; Wang, X. H.; Liu, S. S.; Han, X. X.; Zhao, C. F.; Li, Z.; Ren, J. Appl. Surf. Sci. 2017, 425, 291. doi: 10.1016/j.apsusc.2017.07.002  doi: 10.1016/j.apsusc.2017.07.002

    33. [33]

      Yuan, J.; Zhang, W.; Li, X.; Yang, J. Chem. Commun. 2018, 54, 2284. doi: 10.1039/c7cc08713f  doi: 10.1039/c7cc08713f

    34. [34]

      Wu, X. N.; Li, X. N.; Ding, X. L.; He, S. G.Angew. Chem. Int. Ed. 2013, 52, 2444. doi: 10.1002/anie.201207016  doi: 10.1002/anie.201207016

    35. [35]

      Ding, X. L.; Wang, D.; Li, R. J.; Liao, H. L.; Zhang, Y.; Zhang, H. Y. Phys. Chem. Chem. Phys.2016, 18, 9497. doi: 10.1039/c6cp00808a  doi: 10.1039/c6cp00808a

    36. [36]

      Ding, X. L.; Li, Z. Y.; Meng, J. H.; Zhao, Y. X.; He, S. G. J. Chem. Phys.2012, 137, 214311. doi: 10.1063/1.4769282  doi: 10.1063/1.4769282

    37. [37]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001  doi: 10.1021/j100096a001

    38. [38]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al., Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.

    39. [39]

      Asmis, K. R.; Wende, T.; Brummer, M.; Gause, O.; Santambrogio, G.; Stanca-Kaposta, E. C.; Dobler, J.; Niedziela, A.; Sauer, J. Phys. Chem. Chem. Phys. 2012, 14, 9377. doi: 10.1039/C2cp40245a  doi: 10.1039/C2cp40245a

    40. [40]

      Asmis, K. R.; Sauer, J. Mass Spectrom. Rev. 2007, 26, 542. doi: 10.1002/mas.20136  doi: 10.1002/mas.20136

    41. [41]

      Santambrogio, G.; Brümmer, M.; Wöste, L.; Döbler, J.; Sierka, M.; Sauer, J.; Meijer, G.; Asmis, K. R. Phys. Chem. Chem. Phys. 2008, 10, 3992. doi: 10.1039/b803492c  doi: 10.1039/b803492c

    42. [42]

      Fielicke, A.; Mitrić, R.; Meijer, G.; Bonačić-Koutecký, V.; von Helden, G. J. Am. Chem. Soc. 2003, 125, 15716. doi: 10.1021/ja036264d  doi: 10.1021/ja036264d

    43. [43]

      Bell, R. C.; Zemski, K. A.; Justes, D. R.; Castleman, A. W., Jr. J. Chem. Phys. 2001, 114, 798. doi: 10.1063/1.1329643  doi: 10.1063/1.1329643

    44. [44]

      Zhang, X. H.; Schwarz, H. Chem. Eur. J. 2010, 16, 1163. doi: 10.1002/chem.200902810  doi: 10.1002/chem.200902810

    45. [45]

      Rozanska, X.; Fortrie, R.; Sauer, J. J. Phys. Chem. C 2007, 111, 6041. doi: 10.1021/jp071409e  doi: 10.1021/jp071409e

    46. [46]

      Döbler, J.; Pritzsche, M.; Sauer, J. J. Phys. Chem. C 2009, 113, 12454. doi: 10.1021/jp901774t  doi: 10.1021/jp901774t

    47. [47]

      Ding, X. L.; Xue, W.; Ma, Y. P.; Zhao, Y. X.; Wu, X. N.; He, S. G. J. Phys. Chem. C 2010, 114, 3161. doi: 10.1021/jp9112415  doi: 10.1021/jp9112415

    48. [48]

      Ma, J. B.; Wu, X. N.; Zhao, Y. X.; Ding, X. L.; He, S. G. Phys. Chem. Chem. Phys. 2010, 12, 12223. doi: 10.1039/C0CP00360C  doi: 10.1039/C0CP00360C

    49. [49]

      Ma, J. B.; Meng, J. H.; He, S. G. Dalton Trans. 2015, 44, 3128. doi: 10.1039/c4dt03398a  doi: 10.1039/c4dt03398a

    50. [50]

      Ma, J. B.; Wu, X. N.; Zhao, Y. X.; He, S. G.; Ding, X. L. Acta Phys. -Chim. Sin. 2010, 26, 1761.  doi: 10.3866/pku.whxb20100737

    51. [51]

      Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. doi: 10.1039/b508541a  doi: 10.1039/b508541a

    52. [52]

      Zhao, Y. X.; Ding, X. L.; Ma, Y. P.; Wang, Z. C.; He, S. G. Theor. Chem. Acc. 2010, 127, 449. doi: 10.1007/s00214-010-0732-8  doi: 10.1007/s00214-010-0732-8

    53. [53]

      Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211. doi: 10.1002/wcms.30  doi: 10.1002/wcms.30

    54. [54]

      Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670. doi: 10.1039/C0cp02984j  doi: 10.1039/C0cp02984j

    55. [55]

      Lu, T.; Chen, F. J. Mol. Model. 2013, 19, 5387. doi: 10.1007/s00894-013-2034-2  doi: 10.1007/s00894-013-2034-2

    56. [56]

      Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. doi: 10.1002/jcc.21759  doi: 10.1002/jcc.21759

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(9)
  • Abstract views(521)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return