Citation: WANG Dan, DING Xunlei, LIAO Henglu, DAI Jiayu. Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 1005-1013. doi: 10.3866/PKU.WHXB201809006 shu

Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters

  • Corresponding author: DING Xunlei, dingxl@ncepu.edu.cn DAI Jiayu, jydai@nudt.edu.cn
  • Received Date: 4 September 2018
    Revised Date: 15 October 2018
    Accepted Date: 15 October 2018
    Available Online: 18 September 2018

    Fund Project: the Science and Technology Project of Hunan Province, China 2017RS3038The project was supported by the National Natural Science Foundation of China (91545122, 11774429), the Science and Technology Project of Hunan Province, China (2017RS3038) and the Fundamental Research Funds for the Central Universities, China (JB2015RCY03)The project was supported by the National Natural Science Foundation of China 91545122The project was supported by the National Natural Science Foundation of China 11774429the Fundamental Research Funds for the Central Universities, China JB2015RCY03

  • The activation of methane (CH4) is a key step in its conversion to more valuable products. The activation mechanisms of CH4 on catalyst surfaces have been widely studied using gas-phase cluster models, which can be operated on systems with a precise number of atoms and determined structures. Herein, we have used MV3Oyq (M = Au/Ag, y = 6–8, q = 0 or ±1) clusters, in which a single Au or Ag atom was supported on vanadium oxide clusters, as simple models to mimic the properties of newly developed single-atom catalysts. The adsorption and activation of CH4 on these MV3Oyq clusters were systematically studied via density functional theory calculations at the B3LYP/Def2-TZVP level, which provided insights into the geometric structures, adsorption energies, and charge distributions of the adsorption systems. Five Au-containing clusters, AuV3O6, AuV3O7, AuV3O8, AuV3O6+, and AuV3O7+, were able to activate CH4, while other clusters, including all Ag-containing clusters, were inert. In the active clusters, all Au atoms were adsorbed on the O-atom sites of the supporting V3Oyq cluster and served as the active sites for CH4 activation. The activation of CH4 was characterized by the lengthened C―H bond (approximately 115 pm), short distances between CH4 and Au (approximately 184 pm), relatively high adsorption energies of CH4 (~0.590–1.145 eV), and significant electron transfer from CH4 to the clusters (above 0.08e). In particular, AuV3O8, which is a neutral cluster with a close-shell electronic state, can activate CH4 with a C―H bond length of 115 pm, Au―H bond length of 183 pm, the adsorption energy of CH4 of 0.853 eV, and the charge on CH4 of +0.088e. The charge state of the cluster has a significant effect on the activation ability: cationic clusters are the most active, followed by neutral clusters, while anionic clusters have the lowest activities toward CH4. Consistently, the local charge on the M atom has a positive correction with the activation ability of MV3Oyq clusters with a certain M. However, as compared to Au-containing clusters, Ag-containing clusters have lower activities despite the higher local charges on Ag in each MV3Oyq cluster. The results indicate that the inclusion of D3 dispersion correction has a small effect on structures and energies. This study may serve as a foundation for further research on the activation of CH4 on single-atom catalysts and provides useful information on rational designing of single-atom catalysts for CH4 conversion at low temperatures.
  • 加载中
    1. [1]

      Mundhwa, M.; Thurgood, C. P. Fuel Process. Technol. 2017, 168, 27. doi: 10.1016/j.fuproc.2017.08.031  doi: 10.1016/j.fuproc.2017.08.031

    2. [2]

      Dang, T. T. H.; Seeburg, D.; Radnik, J.; Kreyenschulte, C.; Atia, H.; Vu, T. T. H.; Wohlrab, S. Catal. Commun. 2018, 103, 56. doi: 10.1016/j.catcom.2017.09.004  doi: 10.1016/j.catcom.2017.09.004

    3. [3]

      Burch, R.; Chalker, S.; Loader, P.; Thomas, J. M.; Ueda, W. Appl. Catal. A: Gen. 1992, 82, 77. doi: 10.1016/0926-860X(92)80007-Y  doi: 10.1016/0926-860X(92)80007-Y

    4. [4]

      Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424  doi: 10.1002/anie.201006424

    5. [5]

      Tang, W.; Hu, Z.; Wang, M.; Stucky, G. D.; Metiu, H.; McFarland, E. W. J. Catal. 2010, 273, 125. doi: 10.1016/j.jcat.2010.05.005  doi: 10.1016/j.jcat.2010.05.005

    6. [6]

      Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Nature 1991, 352, 225. doi: 10.1038/352225a0  doi: 10.1038/352225a0

    7. [7]

      Enger, B. C.; Lodeng, R.; Holmen, A. Appl. Catal. A: Gen. 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018  doi: 10.1016/j.apcata.2008.05.018

    8. [8]

      Zhu, Q.; Zhao, X.; Deng, Y. J. Nat. Gas Chem. 2004, 13, 191.

    9. [9]

      Bawornruttanaboonya, K.; Devahastin, S.; Mujumdar, A. S.; Laosiripojana, N. Int. J. Heat Mass Tran. 2017, 115, 174. doi: 10.1016/j.ijheatmasstransfer.2017.08.027  doi: 10.1016/j.ijheatmasstransfer.2017.08.027

    10. [10]

      Chai, R. J.; Zhang, Z. Q.; Chen, P. J.; Zhao, G. F.; Liu, Y.; Lu, Y. Microporous Mesoporous Mat. 2017, 253, 123. doi: 10.1016/j.micromeso.2017.07.005  doi: 10.1016/j.micromeso.2017.07.005

    11. [11]

      Cihlar, J.; Vrba, R.; Castkova, K.; Cihlar, J. Int. J. Hydrog. Energy 2017, 42, 19920. doi: 10.1016/j.ijhydene.2017.06.075  doi: 10.1016/j.ijhydene.2017.06.075

    12. [12]

      Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M. ChemCatChem 2011, 3, 1935. doi: 10.1002/cctc.201100186  doi: 10.1002/cctc.201100186

    13. [13]

      Wei, Q. H.; Gao, X. H.; Liu, G. G.; Yang, R. Q.; Zhang, H. B.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. Fuel 2018, 211, 1. doi: 10.1016/j.fuel.2017.08.093  doi: 10.1016/j.fuel.2017.08.093

    14. [14]

      Wang, S.; Gao, D. N.; Zhang, C. X.; Yuan, Z. S.; Zhang, P.; Wang, S. D. Prog. Chem. 2008, 20, 789.

    15. [15]

      Gao, J.; Guo, J. Z.; Liang, D.; Hou, Z. Y.; Fei, J. H.; Zheng, X. M. Int. J. Hydrog. Energy 2008, 33, 5493. doi: 10.1016/j.ijhydene.2008.07.040  doi: 10.1016/j.ijhydene.2008.07.040

    16. [16]

      Tompos, A.; Margitfalvi, J. L.; Hegedus, M.; Szegedi, A.; Fierro, J. L. G.; Rojas, S. Comb. Chem. High T. Scr. 2007, 10, 71. doi: 10.2174/138620707779802841  doi: 10.2174/138620707779802841

    17. [17]

      Launay, H.; Loridant, S.; Nguyen, D. L.; Volodin, A. M.; Dubois, J. L.; Millet, J. M. M. Catal. Today 2007, 128, 176. doi: 10.1016/j.cattod.2007.07.014  doi: 10.1016/j.cattod.2007.07.014

    18. [18]

      Wang, X.; Qi, G.; Xu, J.; Li, B.; Wang, C.; Deng, F. Angew. Chem. Int. Ed. 2012, 51, 3850. doi: 10.1002/anie.201108634  doi: 10.1002/anie.201108634

    19. [19]

      He, J. L.; Xu, T.; Wang, Z. H.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Angew. Chem. Int. Ed. 2012, 51, 2438. doi: 10.1002/anie.201104071  doi: 10.1002/anie.201104071

    20. [20]

      Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    21. [21]

      Schlangen, M.; Schwarz, H. Catal. Lett. 2012, 142, 1265. doi: 10.1007/s10562-012-0892-3  doi: 10.1007/s10562-012-0892-3

    22. [22]

      Lang, S. M.; Frank, A.; Bernhardt, T. M. J. Phys. Chem. C 2013, 117, 9791. doi: 10.1021/jp312852r  doi: 10.1021/jp312852r

    23. [23]

      Zhou, S.; Yue, L.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Ed. 2017, 56, 14297. doi: 10.1002/anie.201704979  doi: 10.1002/anie.201704979

    24. [24]

      Schwarz, H.; Shaik, S.; Li, J. J. Am. Chem. Soc. 2017, 139, 17201. doi: 10.1021/jacs.7b10139  doi: 10.1021/jacs.7b10139

    25. [25]

      Ding, X. L.; Wu, X. N.; Zhao, Y. X.; He, S. G. Acc. Chem. Res. 2012, 45, 382. doi: 10.1021/ar2001364  doi: 10.1021/ar2001364

    26. [26]

      Zhao, Y. X.; Wu, X. N.; Ma, J. B.; He, S. G.; Ding, X. L. Phys. Chem. Chem. Phys. 2011, 13, 1925. doi: 10.1039/c0cp01171a  doi: 10.1039/c0cp01171a

    27. [27]

      Ding, X. L.; Zhao, Y. X.; Wu, X. N.; Wang, Z. C.; Ma, J. B.; He, S. G. Chem. Eur. J. 2010, 16, 11463. doi: 10.1002/chem.201001297  doi: 10.1002/chem.201001297

    28. [28]

      Wu, X. N.; Ding, X. L.; Li, Z. Y.; Zhao, Y. X.; He, S. G. J. Phys. Chem. C 2014, 118, 24062. doi: 10.1021/jp5059403  doi: 10.1021/jp5059403

    29. [29]

      Lang, S. M.; Bernhardt, T. M.; Chernyy, V.; Bakker, J. M.; Barnett, R. N.; Landman, U. Angew. Chem. Int. Ed. 2017, 56, 13406. doi: 10.1002/anie.201706009  doi: 10.1002/anie.201706009

    30. [30]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/Nchem.1095  doi: 10.1038/Nchem.1095

    31. [31]

      Zhou, X.; Shen, Q.; Yuan, K.; Yang, W.; Chen, Q.; Geng, Z.; Zhang, J.; Shao, X.; Chen, W.; Xu, G.; et al. J. Am. Chem. Soc. 2018, 140, 554. doi: 10.1021/jacs.7b10394  doi: 10.1021/jacs.7b10394

    32. [32]

      Sun, W.; Shi, R. N.; Wang, X. H.; Liu, S. S.; Han, X. X.; Zhao, C. F.; Li, Z.; Ren, J. Appl. Surf. Sci. 2017, 425, 291. doi: 10.1016/j.apsusc.2017.07.002  doi: 10.1016/j.apsusc.2017.07.002

    33. [33]

      Yuan, J.; Zhang, W.; Li, X.; Yang, J. Chem. Commun. 2018, 54, 2284. doi: 10.1039/c7cc08713f  doi: 10.1039/c7cc08713f

    34. [34]

      Wu, X. N.; Li, X. N.; Ding, X. L.; He, S. G.Angew. Chem. Int. Ed. 2013, 52, 2444. doi: 10.1002/anie.201207016  doi: 10.1002/anie.201207016

    35. [35]

      Ding, X. L.; Wang, D.; Li, R. J.; Liao, H. L.; Zhang, Y.; Zhang, H. Y. Phys. Chem. Chem. Phys.2016, 18, 9497. doi: 10.1039/c6cp00808a  doi: 10.1039/c6cp00808a

    36. [36]

      Ding, X. L.; Li, Z. Y.; Meng, J. H.; Zhao, Y. X.; He, S. G. J. Chem. Phys.2012, 137, 214311. doi: 10.1063/1.4769282  doi: 10.1063/1.4769282

    37. [37]

      Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001  doi: 10.1021/j100096a001

    38. [38]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al., Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.

    39. [39]

      Asmis, K. R.; Wende, T.; Brummer, M.; Gause, O.; Santambrogio, G.; Stanca-Kaposta, E. C.; Dobler, J.; Niedziela, A.; Sauer, J. Phys. Chem. Chem. Phys. 2012, 14, 9377. doi: 10.1039/C2cp40245a  doi: 10.1039/C2cp40245a

    40. [40]

      Asmis, K. R.; Sauer, J. Mass Spectrom. Rev. 2007, 26, 542. doi: 10.1002/mas.20136  doi: 10.1002/mas.20136

    41. [41]

      Santambrogio, G.; Brümmer, M.; Wöste, L.; Döbler, J.; Sierka, M.; Sauer, J.; Meijer, G.; Asmis, K. R. Phys. Chem. Chem. Phys. 2008, 10, 3992. doi: 10.1039/b803492c  doi: 10.1039/b803492c

    42. [42]

      Fielicke, A.; Mitrić, R.; Meijer, G.; Bonačić-Koutecký, V.; von Helden, G. J. Am. Chem. Soc. 2003, 125, 15716. doi: 10.1021/ja036264d  doi: 10.1021/ja036264d

    43. [43]

      Bell, R. C.; Zemski, K. A.; Justes, D. R.; Castleman, A. W., Jr. J. Chem. Phys. 2001, 114, 798. doi: 10.1063/1.1329643  doi: 10.1063/1.1329643

    44. [44]

      Zhang, X. H.; Schwarz, H. Chem. Eur. J. 2010, 16, 1163. doi: 10.1002/chem.200902810  doi: 10.1002/chem.200902810

    45. [45]

      Rozanska, X.; Fortrie, R.; Sauer, J. J. Phys. Chem. C 2007, 111, 6041. doi: 10.1021/jp071409e  doi: 10.1021/jp071409e

    46. [46]

      Döbler, J.; Pritzsche, M.; Sauer, J. J. Phys. Chem. C 2009, 113, 12454. doi: 10.1021/jp901774t  doi: 10.1021/jp901774t

    47. [47]

      Ding, X. L.; Xue, W.; Ma, Y. P.; Zhao, Y. X.; Wu, X. N.; He, S. G. J. Phys. Chem. C 2010, 114, 3161. doi: 10.1021/jp9112415  doi: 10.1021/jp9112415

    48. [48]

      Ma, J. B.; Wu, X. N.; Zhao, Y. X.; Ding, X. L.; He, S. G. Phys. Chem. Chem. Phys. 2010, 12, 12223. doi: 10.1039/C0CP00360C  doi: 10.1039/C0CP00360C

    49. [49]

      Ma, J. B.; Meng, J. H.; He, S. G. Dalton Trans. 2015, 44, 3128. doi: 10.1039/c4dt03398a  doi: 10.1039/c4dt03398a

    50. [50]

      Ma, J. B.; Wu, X. N.; Zhao, Y. X.; He, S. G.; Ding, X. L. Acta Phys. -Chim. Sin. 2010, 26, 1761.  doi: 10.3866/pku.whxb20100737

    51. [51]

      Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. doi: 10.1039/b508541a  doi: 10.1039/b508541a

    52. [52]

      Zhao, Y. X.; Ding, X. L.; Ma, Y. P.; Wang, Z. C.; He, S. G. Theor. Chem. Acc. 2010, 127, 449. doi: 10.1007/s00214-010-0732-8  doi: 10.1007/s00214-010-0732-8

    53. [53]

      Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211. doi: 10.1002/wcms.30  doi: 10.1002/wcms.30

    54. [54]

      Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670. doi: 10.1039/C0cp02984j  doi: 10.1039/C0cp02984j

    55. [55]

      Lu, T.; Chen, F. J. Mol. Model. 2013, 19, 5387. doi: 10.1007/s00894-013-2034-2  doi: 10.1007/s00894-013-2034-2

    56. [56]

      Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. doi: 10.1002/jcc.21759  doi: 10.1002/jcc.21759

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

Metrics
  • PDF Downloads(9)
  • Abstract views(443)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return