Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters
- Corresponding author: DING Xunlei, dingxl@ncepu.edu.cn DAI Jiayu, jydai@nudt.edu.cn
Citation:
WANG Dan, DING Xunlei, LIAO Henglu, DAI Jiayu. Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters[J]. Acta Physico-Chimica Sinica,
;2019, 35(9): 1005-1013.
doi:
10.3866/PKU.WHXB201809006
Mundhwa, M.; Thurgood, C. P. Fuel Process. Technol. 2017, 168, 27. doi: 10.1016/j.fuproc.2017.08.031
doi: 10.1016/j.fuproc.2017.08.031
Dang, T. T. H.; Seeburg, D.; Radnik, J.; Kreyenschulte, C.; Atia, H.; Vu, T. T. H.; Wohlrab, S. Catal. Commun. 2018, 103, 56. doi: 10.1016/j.catcom.2017.09.004
doi: 10.1016/j.catcom.2017.09.004
Burch, R.; Chalker, S.; Loader, P.; Thomas, J. M.; Ueda, W. Appl. Catal. A: Gen. 1992, 82, 77. doi: 10.1016/0926-860X(92)80007-Y
doi: 10.1016/0926-860X(92)80007-Y
Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424
doi: 10.1002/anie.201006424
Tang, W.; Hu, Z.; Wang, M.; Stucky, G. D.; Metiu, H.; McFarland, E. W. J. Catal. 2010, 273, 125. doi: 10.1016/j.jcat.2010.05.005
doi: 10.1016/j.jcat.2010.05.005
Ashcroft, A. T.; Cheetham, A. K.; Green, M. L. H.; Vernon, P. D. F. Nature 1991, 352, 225. doi: 10.1038/352225a0
doi: 10.1038/352225a0
Enger, B. C.; Lodeng, R.; Holmen, A. Appl. Catal. A: Gen. 2008, 346, 1. doi: 10.1016/j.apcata.2008.05.018
doi: 10.1016/j.apcata.2008.05.018
Zhu, Q.; Zhao, X.; Deng, Y. J. Nat. Gas Chem. 2004, 13, 191.
Bawornruttanaboonya, K.; Devahastin, S.; Mujumdar, A. S.; Laosiripojana, N. Int. J. Heat Mass Tran. 2017, 115, 174. doi: 10.1016/j.ijheatmasstransfer.2017.08.027
doi: 10.1016/j.ijheatmasstransfer.2017.08.027
Chai, R. J.; Zhang, Z. Q.; Chen, P. J.; Zhao, G. F.; Liu, Y.; Lu, Y. Microporous Mesoporous Mat. 2017, 253, 123. doi: 10.1016/j.micromeso.2017.07.005
doi: 10.1016/j.micromeso.2017.07.005
Cihlar, J.; Vrba, R.; Castkova, K.; Cihlar, J. Int. J. Hydrog. Energy 2017, 42, 19920. doi: 10.1016/j.ijhydene.2017.06.075
doi: 10.1016/j.ijhydene.2017.06.075
Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, M. ChemCatChem 2011, 3, 1935. doi: 10.1002/cctc.201100186
doi: 10.1002/cctc.201100186
Wei, Q. H.; Gao, X. H.; Liu, G. G.; Yang, R. Q.; Zhang, H. B.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. Fuel 2018, 211, 1. doi: 10.1016/j.fuel.2017.08.093
doi: 10.1016/j.fuel.2017.08.093
Wang, S.; Gao, D. N.; Zhang, C. X.; Yuan, Z. S.; Zhang, P.; Wang, S. D. Prog. Chem. 2008, 20, 789.
Gao, J.; Guo, J. Z.; Liang, D.; Hou, Z. Y.; Fei, J. H.; Zheng, X. M. Int. J. Hydrog. Energy 2008, 33, 5493. doi: 10.1016/j.ijhydene.2008.07.040
doi: 10.1016/j.ijhydene.2008.07.040
Tompos, A.; Margitfalvi, J. L.; Hegedus, M.; Szegedi, A.; Fierro, J. L. G.; Rojas, S. Comb. Chem. High T. Scr. 2007, 10, 71. doi: 10.2174/138620707779802841
doi: 10.2174/138620707779802841
Launay, H.; Loridant, S.; Nguyen, D. L.; Volodin, A. M.; Dubois, J. L.; Millet, J. M. M. Catal. Today 2007, 128, 176. doi: 10.1016/j.cattod.2007.07.014
doi: 10.1016/j.cattod.2007.07.014
Wang, X.; Qi, G.; Xu, J.; Li, B.; Wang, C.; Deng, F. Angew. Chem. Int. Ed. 2012, 51, 3850. doi: 10.1002/anie.201108634
doi: 10.1002/anie.201108634
He, J. L.; Xu, T.; Wang, Z. H.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Angew. Chem. Int. Ed. 2012, 51, 2438. doi: 10.1002/anie.201104071
doi: 10.1002/anie.201104071
Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150
doi: 10.1126/science.1253150
Schlangen, M.; Schwarz, H. Catal. Lett. 2012, 142, 1265. doi: 10.1007/s10562-012-0892-3
doi: 10.1007/s10562-012-0892-3
Lang, S. M.; Frank, A.; Bernhardt, T. M. J. Phys. Chem. C 2013, 117, 9791. doi: 10.1021/jp312852r
doi: 10.1021/jp312852r
Zhou, S.; Yue, L.; Schlangen, M.; Schwarz, H. Angew. Chem. Int. Ed. 2017, 56, 14297. doi: 10.1002/anie.201704979
doi: 10.1002/anie.201704979
Schwarz, H.; Shaik, S.; Li, J. J. Am. Chem. Soc. 2017, 139, 17201. doi: 10.1021/jacs.7b10139
doi: 10.1021/jacs.7b10139
Ding, X. L.; Wu, X. N.; Zhao, Y. X.; He, S. G. Acc. Chem. Res. 2012, 45, 382. doi: 10.1021/ar2001364
doi: 10.1021/ar2001364
Zhao, Y. X.; Wu, X. N.; Ma, J. B.; He, S. G.; Ding, X. L. Phys. Chem. Chem. Phys. 2011, 13, 1925. doi: 10.1039/c0cp01171a
doi: 10.1039/c0cp01171a
Ding, X. L.; Zhao, Y. X.; Wu, X. N.; Wang, Z. C.; Ma, J. B.; He, S. G. Chem. Eur. J. 2010, 16, 11463. doi: 10.1002/chem.201001297
doi: 10.1002/chem.201001297
Wu, X. N.; Ding, X. L.; Li, Z. Y.; Zhao, Y. X.; He, S. G. J. Phys. Chem. C 2014, 118, 24062. doi: 10.1021/jp5059403
doi: 10.1021/jp5059403
Lang, S. M.; Bernhardt, T. M.; Chernyy, V.; Bakker, J. M.; Barnett, R. N.; Landman, U. Angew. Chem. Int. Ed. 2017, 56, 13406. doi: 10.1002/anie.201706009
doi: 10.1002/anie.201706009
Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/Nchem.1095
doi: 10.1038/Nchem.1095
Zhou, X.; Shen, Q.; Yuan, K.; Yang, W.; Chen, Q.; Geng, Z.; Zhang, J.; Shao, X.; Chen, W.; Xu, G.; et al. J. Am. Chem. Soc. 2018, 140, 554. doi: 10.1021/jacs.7b10394
doi: 10.1021/jacs.7b10394
Sun, W.; Shi, R. N.; Wang, X. H.; Liu, S. S.; Han, X. X.; Zhao, C. F.; Li, Z.; Ren, J. Appl. Surf. Sci. 2017, 425, 291. doi: 10.1016/j.apsusc.2017.07.002
doi: 10.1016/j.apsusc.2017.07.002
Yuan, J.; Zhang, W.; Li, X.; Yang, J. Chem. Commun. 2018, 54, 2284. doi: 10.1039/c7cc08713f
doi: 10.1039/c7cc08713f
Wu, X. N.; Li, X. N.; Ding, X. L.; He, S. G.Angew. Chem. Int. Ed. 2013, 52, 2444. doi: 10.1002/anie.201207016
doi: 10.1002/anie.201207016
Ding, X. L.; Wang, D.; Li, R. J.; Liao, H. L.; Zhang, Y.; Zhang, H. Y. Phys. Chem. Chem. Phys.2016, 18, 9497. doi: 10.1039/c6cp00808a
doi: 10.1039/c6cp00808a
Ding, X. L.; Li, Z. Y.; Meng, J. H.; Zhao, Y. X.; He, S. G. J. Chem. Phys.2012, 137, 214311. doi: 10.1063/1.4769282
doi: 10.1063/1.4769282
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
doi: 10.1021/j100096a001
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al., Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
Asmis, K. R.; Wende, T.; Brummer, M.; Gause, O.; Santambrogio, G.; Stanca-Kaposta, E. C.; Dobler, J.; Niedziela, A.; Sauer, J. Phys. Chem. Chem. Phys. 2012, 14, 9377. doi: 10.1039/C2cp40245a
doi: 10.1039/C2cp40245a
Asmis, K. R.; Sauer, J. Mass Spectrom. Rev. 2007, 26, 542. doi: 10.1002/mas.20136
doi: 10.1002/mas.20136
Santambrogio, G.; Brümmer, M.; Wöste, L.; Döbler, J.; Sierka, M.; Sauer, J.; Meijer, G.; Asmis, K. R. Phys. Chem. Chem. Phys. 2008, 10, 3992. doi: 10.1039/b803492c
doi: 10.1039/b803492c
Fielicke, A.; Mitrić, R.; Meijer, G.; Bonačić-Koutecký, V.; von Helden, G. J. Am. Chem. Soc. 2003, 125, 15716. doi: 10.1021/ja036264d
doi: 10.1021/ja036264d
Bell, R. C.; Zemski, K. A.; Justes, D. R.; Castleman, A. W., Jr. J. Chem. Phys. 2001, 114, 798. doi: 10.1063/1.1329643
doi: 10.1063/1.1329643
Zhang, X. H.; Schwarz, H. Chem. Eur. J. 2010, 16, 1163. doi: 10.1002/chem.200902810
doi: 10.1002/chem.200902810
Rozanska, X.; Fortrie, R.; Sauer, J. J. Phys. Chem. C 2007, 111, 6041. doi: 10.1021/jp071409e
doi: 10.1021/jp071409e
Döbler, J.; Pritzsche, M.; Sauer, J. J. Phys. Chem. C 2009, 113, 12454. doi: 10.1021/jp901774t
doi: 10.1021/jp901774t
Ding, X. L.; Xue, W.; Ma, Y. P.; Zhao, Y. X.; Wu, X. N.; He, S. G. J. Phys. Chem. C 2010, 114, 3161. doi: 10.1021/jp9112415
doi: 10.1021/jp9112415
Ma, J. B.; Wu, X. N.; Zhao, Y. X.; Ding, X. L.; He, S. G. Phys. Chem. Chem. Phys. 2010, 12, 12223. doi: 10.1039/C0CP00360C
doi: 10.1039/C0CP00360C
Ma, J. B.; Meng, J. H.; He, S. G. Dalton Trans. 2015, 44, 3128. doi: 10.1039/c4dt03398a
doi: 10.1039/c4dt03398a
Ma, J. B.; Wu, X. N.; Zhao, Y. X.; He, S. G.; Ding, X. L. Acta Phys. -Chim. Sin. 2010, 26, 1761.
doi: 10.3866/pku.whxb20100737
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. doi: 10.1039/b508541a
doi: 10.1039/b508541a
Zhao, Y. X.; Ding, X. L.; Ma, Y. P.; Wang, Z. C.; He, S. G. Theor. Chem. Acc. 2010, 127, 449. doi: 10.1007/s00214-010-0732-8
doi: 10.1007/s00214-010-0732-8
Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211. doi: 10.1002/wcms.30
doi: 10.1002/wcms.30
Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670. doi: 10.1039/C0cp02984j
doi: 10.1039/C0cp02984j
Lu, T.; Chen, F. J. Mol. Model. 2013, 19, 5387. doi: 10.1007/s00894-013-2034-2
doi: 10.1007/s00894-013-2034-2
Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. doi: 10.1002/jcc.21759
doi: 10.1002/jcc.21759
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.