Citation: PAN Mingguang, ZHAO Yongsheng, ZENG Xiaoqin, ZOU Jianxin. Moisture-Responsive Behavior in the Azophenolic Ionic Liquid Solution Accompanied by a Naked-Eye Color Change[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 624-629. doi: 10.3866/PKU.WHXB201807035 shu

Moisture-Responsive Behavior in the Azophenolic Ionic Liquid Solution Accompanied by a Naked-Eye Color Change

  • Corresponding author: PAN Mingguang, panmingguang@sjtu.edu.cn ZOU Jianxin, zoujx@sjtu.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 23 August 2018
    Accepted Date: 23 August 2018
    Available Online: 27 June 2018

    Fund Project: The project was supported by the China Postdoctoral Science Foundation (2017M621476, 2017M621477) and National Natural Science Foundation of China (51771112)the China Postdoctoral Science Foundation 2017M621476National Natural Science Foundation of China 51771112the China Postdoctoral Science Foundation 2017M621477

  • Room temperature ionic liquids (ILs) that can exhibit a colorimetric response to moisture in the air are rarely reported in the literature. In this study, an azophenolic IL solution exhibited a spontaneous a colorimetric response, driven by the formation of hydrogen bonding between the [PhN=NPhO] anion and moisture in the air. This phenomenon was clearly understood using ultraviolet-visible (UV-Vis) absorption spectroscopy, nuclear magnetic resonance (NMR) spectra, experimental data, and theoretical calculations. Specifically, in the UV-Vis absorption spectra, absorption around 455 nm decreased, while the band around 343 nm increased in the IL CHCl3 solution as time progressed; this was accompanied by a color change from orange to faint yellow. This spontaneous, self-responsive process was further observed using 1H NMR data. When the IL solution was placed with sufficient time, all the 1H NMR peaks of the azophenolic anion shifted downfield, but no new signals appeared in the upfield region. The reason for this was easily identified as the stimuli in the air, such as CO2 and moisture. When pure CO2 was bubbled through the IL CHCl3 solution, the solution color changed from its original orange to light orange, but could not change further to faint yellow, which ruled out CO2 gas as a stimulus. When a small amount of water was gradually added to the IL solution (MeCN solvent), the absorption band around 474 nm decreased, coupled with an increase in the absorption band around 347 nm. This was accompanied by a color change from orange to faint yellow, which was almost identical to the self-responsive process in CHCl3 and CCl4. Moreover, two cuvettes of IL CHCl3 solution were placed under relative humidities of 28% and 100%, respectively; the IL CHCl3 solution required a much longer time to exhibit a complete color change from orange to faint yellow under a lower relative humidity, demonstrating that moisture is the most likely stimulus triggering the self-responsive color change of the IL solution. As revealed by the Gaussian 09 program at the B3LYP/6-31++G(p, d) level, the distance between the oxygen atom on the azophenolic anion and the hydrogen atom on the H2O molecule was 0.174 nm, and the corresponding angle was 171.12°. Furthermore, the atomic dipole moment corrected Hirshfeld (ADCH) charge of the oxygen atom on the azophenolic anion was −0.52, and it increased to −0.62 after the azophenolic anion interacted with the H2O. Reduced density gradient analysis revealed that the spike corresponding to O∙∙∙H―O for the IL-H2O complex was located at around −0.04 a.u.. All the above data indicate that the presence of hydrogen bonding rendered the IL solution responsive to the moisture stimulus, and this response was accompanied by a color change that was visible to the naked eye. To the best of our knowledge, this is the first demonstration of a colorimetric change in an IL solution in response to moisture. We hope this work can help us to gain insight into some seemingly abnormal phenomena that occur during the research process.
  • 加载中
    1. [1]

      Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Nat. Mater. 2011, 10, 14. doi: 10.1038/nmat2891  doi: 10.1038/nmat2891

    2. [2]

      Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; et al. Nat. Mater. 2010, 9, 101. doi: 10.1038/nmat2614  doi: 10.1038/nmat2614

    3. [3]

      Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Nature 2005, 434, 879. doi: 10.1038/ nature03496  doi: 10.1038/nature03496

    4. [4]

      Ma, M.; Guo, L.; Anderson, D. G.; Langer, R. Science 2013, 339, 186. doi: 10.1126/science.1230262  doi: 10.1126/science.1230262

    5. [5]

      Kim, J.; Hanna, J. A.; Byun, M.; Santangelo, C. D.; Hayward, R. C. Science 2012, 335, 1201. doi: 10.1126/science.1215309  doi: 10.1126/science.1215309

    6. [6]

      Yan, X.; Wang, F.; Zeng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042. doi: 10.1039/C2CS35091B  doi: 10.1039/C2CS35091B

    7. [7]

      Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.; Meijer, E. W. Adv. Mater. 2000, 12, 874. doi: 10.1002/1521- 4095(200006)12:12 < 874::AID-ADMA874>3.0.CO; 2-C  doi: 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C

    8. [8]

      Liao, X.; Chen, G.; Liu, X.; Chen, W.; Chen, F.; Jiang, M. Angew. Chem. Int. Ed. 2010, 49, 4409. doi: 10.1002/ange.201000141  doi: 10.1002/ange.201000141

    9. [9]

      Xie, T. Nature 2010, 464, 267. doi: 10.1038/nature08863  doi: 10.1038/nature08863

    10. [10]

      Aida, T.; Meiger, E. W.; Stupp, S. I. Science 2012, 335, 813. doi: 10.1126/science.1205962  doi: 10.1126/science.1205962

    11. [11]

      Jeon, Y. J.; Bharadwaj, P. K.; Choi, S.; Lee, J. W.; Kim, K. Angew. Chem. Int. Ed. 2002, 41, 4474. doi: 10.1002/1521-3773(20021202) 41:23 < 4474::AID-ANIE4474>3.0.CO; 2-S  doi: 10.1002/1521-3773(20021202)41:23<4474::AID-ANIE4474>3.0.CO;2-S

    12. [12]

      Thibault, R. J.; Hotchkiss, P. J.; Gray, M.; Rotello, V. M. J. Am. Chem. Soc. 2003, 125, 11249. doi: 10.1021/ja034868b  doi: 10.1021/ja034868b

    13. [13]

      Wilson, A. J. Soft Matter 2007, 3, 409. doi: 10.1039/B612566B  doi: 10.1039/B612566B

    14. [14]

      Zhang, X.; Wang, C. Chem. Soc. Rev. 2011, 40, 94. doi: 10.1039/B919678C  doi: 10.1039/B919678C

    15. [15]

      Tao, W.; Liu, Y.; Jiang, B.; Yu, S.; Huang, W.; Zhou, Y.; Yan, D. J. Am. Chem. Soc. 2012, 134, 762. doi: 10.1021/ja207924w  doi: 10.1021/ja207924w

    16. [16]

      Neal, J. A.; Mozhdehi, D.; Guan, Z. J. Am. Chem. Soc. 2015, 137, 4846. doi: 10.1021/jacs.5b01601  doi: 10.1021/jacs.5b01601

    17. [17]

      Xu, X.; Song, C.; Miller, B. G.; Scaoni, A. W. Ind. Eng. Chem. Res. 2005, 44, 8113. doi: 10.1021/ie050382n  doi: 10.1021/ie050382n

    18. [18]

      McDanel, W. M.; Cowan, M. G.; Chisholm, N. O.; Gin, D. L.; Noble, R. D. J. Membr. Sci. 2015, 492, 303. doi: 10.1016/j.memsci.2015.05.034  doi: 10.1016/j.memsci.2015.05.034

    19. [19]

      Zeng, R.; Zhang, J.; Huang, W.; Dietzel, W.; Kainer, K. U.; Blawert, C.; Ke, W. Trans. Nonferrous Met. Soc. 2006, 16, s763. doi: 10.1016/S1003-6326(06)60297-5  doi: 10.1016/S1003-6326(06)60297-5

    20. [20]

      Li, C.; Chen, L. Chem. Soc. Rev. 2006, 35, 68. doi: 10.1039/B507207G  doi: 10.1039/B507207G

    21. [21]

      Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem. Int. Ed. 2004, 43, 2415. doi: 10.1002/ange.200353437  doi: 10.1002/ange.200353437

    22. [22]

      Huang, J. F.; Luo, H. M.; Liang, C. D.; Sun, I. W.; Baker, G. A.; Dai, S. J. Am. Chem. Soc. 2005, 127, 12784. doi: 10.1021/ja053965x  doi: 10.1021/ja053965x

    23. [23]

      Armond, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. doi: 10.1038/nmat2448  doi: 10.1038/nmat2448

    24. [24]

      Cui, G.; Wang, J.; Zhang, S. Chem. Soc. Rev. 2016, 45, 4307. doi: 10.1039/C5CS00462D  doi: 10.1039/C5CS00462D

    25. [25]

      Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Chem. Rev. 2017, 117, 9625. doi: 10.1021/acs.chemrev.7b00072  doi: 10.1021/acs.chemrev.7b00072

    26. [26]

      Han, B. Acta Phys. -Chim. Sin. 2018, 34, 451.  doi: 10.3866/PKU.WHXB201710122

    27. [27]

      Zhao, Y.; Pan, M.; Kang, X.; Tu, W.; Gao, H.; Zhang, X. Chem. Eng. Sci. 2018, 189, 43. doi: 10.1016/j.ces.2018.05.044  doi: 10.1016/j.ces.2018.05.044

    28. [28]

      Pan, M.; Zhao, Y.; Zeng, X.; Zou, J. Energy Fuels 2018, 32, 6130. doi: 10.1021/acs.energyfuels.8b00879  doi: 10.1021/acs.energyfuels.8b00879

    29. [29]

      Jessop, P. G.; Heldebrant, D. J.; Li, X.; Eckert, C. A.; Liotta, C. L. Nature 2005, 436, 1102. doi: 10.1038/4361102a  doi: 10.1038/4361102a

    30. [30]

      Liu, Y.; Tang, T.; Barashkov, N. N.; Irgibaeva, I. S.; Lam, J. W. Y.; Hu, R.; Birimzhanova, D.; Yu, Y.; Tang, B. Z. J. Am. Chem. Soc. 2010, 132, 13951. doi: 10.1021/ja103947j  doi: 10.1021/ja103947j

    31. [31]

      Che, S.; Dao, R.; Zhang, W.; Lv, X.; Li, H.; Wang, C. Chem. Commun. 2017, 53, 3862. doi: 10.1039/C7CC00676D  doi: 10.1039/C7CC00676D

    32. [32]

      Wang, C.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S. Angew. Chem. Int. Ed. 2010, 49, 5978. doi: 10.1002/ange.201002641  doi: 10.1002/ange.201002641

    33. [33]

      Jin, Z.; Xie, D. X.; Zhang, X. B.; Gong, Y. J.; Tan, W. Anal. Chem. 2012, 84, 4253. doi: 10.1021/ac300676v  doi: 10.1021/ac300676v

    34. [34]

      Must, I.; Vonder, V.; Kassik, F.; Põldsalu, I.; Johanson, U.; Punning, A.; Aabloo, A. Sensor Actuat. B-Chem. 2014, 202, 114. doi: 10.1016/j.snb.2014.05.074  doi: 10.1016/j.snb.2014.05.074

    35. [35]

      Sullivan-González, F.; Scovazzo, P.; Amos, R.; Bae, S.-K. Membr. Sci. 2017, 533, 190. doi: 10.1016/j.memsci.2017.03.026  doi: 10.1016/j.memsci.2017.03.026

    36. [36]

      Pan, M.; Cao, N.; Lin, W.; Luo, X.; Chen, K.; Che, S.; Li, H.; Wang, C. ChemSusChem 2016, 9, 2351. doi: 10.1002/cssc.201600402  doi: 10.1002/cssc.201600402

    37. [37]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision C.01; Wallingford, CT: Gaussian Inc., 2010.

    38. [38]

      Bortolus, P.; Monti, S. J. Phys. Chem. 1979, 83, 648. doi: 10.1021/j100469a002  doi: 10.1021/j100469a002

    39. [39]

      Johnson, E. R.; Keinan, S.; Mori-Sanche, P.; Contretras-Garicia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498. doi: 10.1021/ja100936w  doi: 10.1021/ja100936w

    40. [40]

      Wang, C.; Luo, X.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S. Angew. Chem. Int. Ed. 2011, 50, 4918. doi: 10.1002/ange.201008151  doi: 10.1002/ange.201008151

    41. [41]

      Cao, L.; Zhu, P.; Zhao, Y.; Zhao, J. J. Hazard Mater. 2018, 352, 17. doi: 10.1016/j.jhazmat.2018.03.025  doi: 10.1016/j.jhazmat.2018.03.025

  • 加载中
    1. [1]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    2. [2]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    3. [3]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    4. [4]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    5. [5]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    6. [6]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    7. [7]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    8. [8]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    9. [9]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    10. [10]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    11. [11]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    12. [12]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    13. [13]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    14. [14]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    15. [15]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    16. [16]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    17. [17]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    20. [20]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

Metrics
  • PDF Downloads(6)
  • Abstract views(347)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return