Citation: DONG Yujie, XU Chendong, WANG Shizhao, LI Weijun, SONG Qingbao, ZHANG Cheng. Stabilization of the E/Z Configuration for Cyanostilbene-based Luminogens by Enhanced Charge Transfer Excited State[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 637-643. doi: 10.3866/PKU.WHXB201807004 shu

Stabilization of the E/Z Configuration for Cyanostilbene-based Luminogens by Enhanced Charge Transfer Excited State

  • Corresponding author: SONG Qingbao, qbsong@zjut.edu.cn ZHANG Cheng, czhang@zjut.edu.cn
  • Received Date: 4 July 2018
    Revised Date: 31 July 2018
    Accepted Date: 1 August 2018
    Available Online: 8 June 2018

    Fund Project: the National Natural Science Foundation of China 51603185the Zhejiang Provincial Natural Science Foundation, China LY17E030001the National Natural Science Foundation of China 51673174the Zhejiang Provincial Postdoctoral fellowship, China Z71101009The project was supported by the China Postdoctoral Science Foundation (2018M632498), the Zhejiang Provincial Postdoctoral fellowship, China (Z71101009), the National Natural Science Foundation of China (51603185, 51673174), and the Zhejiang Provincial Natural Science Foundation, China (LY17E030001)The project was supported by the China Postdoctoral Science Foundation 2018M632498

  • The E/Z isomerization reaction is found extensively in most organic molecules containing double bond unit. This limits their practical application as luminescent materials partly, especially under photoirradiation. Therefore, it is important to obtain E/Z isomers with stable configuration in the excited state after photoirradiation. It is well known that cyanostilbene and its analogues play an important role in the development of organic opto/electronic materials. The substituted cyano group on C=C double bonds has strong electron-withdrawing ability and large steric hindrance, which benefits the formation of donor-acceptor (D-A) structures and formation of intramolecular charge transfer. In our previous work, we reported a triphenylamine-cyanostilbene molecule (TPNCF) formed by modifying the cyanostilbene structure with triphenylamine, which maintained a stable E/Z configuration as a film and in high polar solvents. According to solvatochromism mechanisms and the results of theoretical calculations, we proposed that the charge transfer (CT) excited state between the triphenylamine donor and cyanostilbene acceptor groups induced the stable configuration of the E- and Z- isomers under photoirradiation. Under irradiation, the E/Z isomerization process occurring at a higher energy locally excited (LE) state was suppressed by a rapid internal conversion process from the LE to CT state. This work inspired us to provide a universal and effective molecular design strategy by modifying D-A substituents on double bonds that can successfully stabilize E/Z isomers. To further confirm that the CT excited state induced stable E- and Z- isomers in the cyanostilbene structure under photoirradiation, we designed and synthesized a donor-acceptor phenoxazine-cyanostilbene molecule (PZNCF) and successfully characterized its two E/Z isomers. In comparison with the reported TPNCF molecule, the in-situ NMR and UV spectra of E- and Z- isomers of PZNCF demonstrated that the E/Z isomerization rate became slower under photoirradiation, which indicated that the stronger electron-donating group of phenoxazine substituted in the cyanostilbene structure induced a more stable E/Z isomer configuration in its excited state. DFT calculations and photophysical results indicated that a stronger CT state was generated in both E- and Z- isomers of PZNCF. This further confirmed our hypothesized mechanism where the stable E/Z configuration can be obtained under photoirradiation by forming a suitable donor-acceptor structure to suppress the E/Z isomerization reaction in the LE state by a rapid internal crossing process from the LE to CT state. This molecular design strategy is of great significance to organic photochemistry and photoelectronics for molecules with double bond units.
  • 加载中
    1. [1]

      Lange, F. J.; Leuze, M.; Hanack, M. J. Phys. Org. Chem. 2001, 14, 474. doi: 10.1002/poc.394  doi: 10.1002/poc.394

    2. [2]

      Yeh, H. C.; Wu, W. C.; Wen, Y. S.; Dai, D. C.; Wang, J. K.; Chen, C. T. J. Org. Chem. 2004, 69, 6455. doi: 10.1021/jo049512c  doi: 10.1021/jo049512c

    3. [3]

      Lu, H. B.; Wu, S. J.; Zhang, C.; Qiu, L. Z.; Wang, X. H.; Zhang, G. B.; Hu, J. T.; Yang, J. X. Dyes and Pigments 2016, 128, 289. doi: 10.1016/j.dyepig.2016.01.024  doi: 10.1016/j.dyepig.2016.01.024

    4. [4]

      Garg, K.; Ganapathi, E.; Rajakannu, P.; Ravikanth, M. Phys. Chem. Chem. Phys. 2015, 17, 19465. doi: 10.1039/c5cp02400e  doi: 10.1039/c5cp02400e

    5. [5]

      Liang, J.; Shi, H. B.; Kwok, R. T. K.; Gao, M.; Yuan, Y. Y.; Zhang, W. H.; Tang, B. Z.; Liu, B. J. Matetr. Chem. B 2014, 2, 4363. doi: 10.1039/c4tb00405a  doi: 10.1039/c4tb00405a

    6. [6]

      Chung, J. W.; Yoon, S. J.; An, B. K.; Park, S. Y. J. Phys. Chem. C 2013, 117, 11285. doi: 10.1021/jp401440s  doi: 10.1021/jp401440s

    7. [7]

      Zhang, Y. H.; Mao, H. L.; Kong, L. W.; Tian, Y.; Tian, Z. L.; Zeng, X. K.; Zhi, J. G.; Shi, J. B.; Tong, B.; Dong, Y. P. Dyes and Pigments 2016, 133, 354. doi: 10.1016/j.dyepig.2016.06.016  doi: 10.1016/j.dyepig.2016.06.016

    8. [8]

      Shinkre, B. A.; Nadkarni, D. H.; Owens, S. B.; Gray, G. M.; Velu, S. E. J. Chem. Crystallogr. 2007, 38, 205. doi: 10.1007/s10870-007-9290-x  doi: 10.1007/s10870-007-9290-x

    9. [9]

      Wei, P. F.; Zhang, J. X.; Zhao, Z.; Chen, Y. C.; He, X. W.; Chen, M.; Sung, H. H. Y.; Williams, I. D.; Lam, J. W. Y.; Tang, B. Z.; et al. J. Am. Chem. Soc. 2018, 140, 1966. doi: 10.1021/jacs.7b13364  doi: 10.1021/jacs.7b13364

    10. [10]

      Xi, W. G.; Zhang, Y. B.; Chen, B. Y.; Gan, X. P.; Fang, M.; Zheng, J.; Wu, J. Y.; Tian, Y. P.; Hao, F. Y.; Zhou, H. P. Dyes and Pigments 2015, 122, 31. doi: 10.1016/j.dyepig.2015.06.008  doi: 10.1016/j.dyepig.2015.06.008

    11. [11]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu Y. Q.; et al. Chem. Commun. 2001, 1740. doi: 10.1039/b105159h  doi: 10.1039/b105159h

    12. [12]

      Zhu, Z.; Xu L.; Yang, C. Sensors and Actuators B: Chemical 2015, 221, 443. doi: 10.1016/j.snb.2015.06.134  doi: 10.1016/j.snb.2015.06.134

    13. [13]

      Fang, X. F.; Zhang, Y. M.; Chang, K. W.; Liu, Z. L.; Su, X.; Chen, H. B.; Zhang, S. X. A.; Liu Y. F.; Wu, C. F. Chem. Mater. 2016, 28, 6628. doi: 10.1021/acs.chemmater.6b02746  doi: 10.1021/acs.chemmater.6b02746

    14. [14]

      Wang, J.; Mei, J.; Hu, R. R.; Sun, J. Z.; Qin A. J.; Tang, B. Z. J. Am. Chem. Soc. 2012, 134, 9956. doi: 10.1021/ja208883h  doi: 10.1021/ja208883h

    15. [15]

      Zhang, C. J.; Feng, G. X.; Xu, S. D.; Zhu, Z. S.; Lu, X. M.; Wu, J.; Liu, B. Angew. Chem. Int. Ed. 2016, 55, 1. doi: 10.1002/anie.201600244  doi: 10.1002/anie.201600244

    16. [16]

      Wang, Z. Y.; Cheng, X.; Qin, A. J.; Zhang, H. K.; Sun, J. Z.; Tang, B. Z. J. Phys. Chem. B 2018, 122, 2165. doi: 10.1021/acs.jpcb.7b10929  doi: 10.1021/acs.jpcb.7b10929

    17. [17]

      Yang, Z. Y.; Qin, W.; Leung, N. L. C.; Arseneault, M.; Lam, J. W. Y.; Liang, G. D.; Sung, H. H. Y.; Williams I. D.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 99. doi: 10.1039/c5tc02924d  doi: 10.1039/c5tc02924d

    18. [18]

      Dong, Y. J. Small Molecules Based on Divinylanthracene: Design and Synthesis, Crystal Structure, Self-assembly and Piezochromic Properties. Muster degree Dissertation, Jilin University, Jilin, 2012.

    19. [19]

      Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L. Angew. Chem. Int. Ed. 2012, 51, 10782. doi: 10.1002/anie.201204660  doi: 10.1002/anie.201204660

    20. [20]

      Li, W. J.; Yao L.; Liu H. C.; Wang, Z. M.; Zhang, S. T.; Xiao R.; Zhang, H. H.; Lu, P.; Yang, B.; Ma, Y. G. J. Mater. Chem. C 2014, 2, 4733. doi: 10.1039/c4tc00487f  doi: 10.1039/c4tc00487f

    21. [21]

      Li, W. J.; Wang, S. Z.; Zhang, Y. J.; Gao, Y.; Dong, Y. J.; Zhang, X.; Song, Q. B.; Yang, B.; Ma, Y. G.; Zhang, C. J. Mater. Chem. C 2017, 5, 8097. doi: 10.1039/c7tc02474f  doi: 10.1039/c7tc02474f

    22. [22]

      Park, I. S.; Lee, S. Y.; Adachi, C.; Yasuda, T. Adv. Funct. Mater. 2016, 26, 1813. doi: 10.1002/adfm.201505106  doi: 10.1002/adfm.201505106

    23. [23]

      Duan, C. B.; Li, J.; Han, C. M.; Ding, D. X.; Yang, H.; Wei, Y.; Xu, H. Chem. Mater. 2016, 28, 5667. doi: 10.1021/acs.chemmater.6b01691  doi: 10.1021/acs.chemmater.6b01691

    24. [24]

      Li, W. J.; Pan, Y. Y.; Xiao, R.; Peng, Q. M.; Zhang, S. T.; Ma, D. G.; Li, F.; Shen, F. Z.; Wang, Y. H.; Yang, B. Adv. Funct. Mater. 2014, 24, 1609. doi: 10.1002/adfm.201301750  doi: 10.1002/adfm.201301750

    25. [25]

      Li, W. J.; Liu, D. D.; Shen, F. Z.; Ma, D. G.; Wang, Z. M.; Feng, T.; Xu, Y. X.; Yang, B.; Ma, Y. G. Adv. Funct. Mater. 2012, 22, 2797. doi: 10.1002/adfm.201200116  doi: 10.1002/adfm.201200116

  • 加载中
    1. [1]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    2. [2]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    3. [3]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    4. [4]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    5. [5]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    6. [6]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    7. [7]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    10. [10]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    13. [13]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    14. [14]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    15. [15]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    16. [16]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    17. [17]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    18. [18]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    19. [19]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    20. [20]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

Metrics
  • PDF Downloads(10)
  • Abstract views(642)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return