Citation: LIANG Shuang, GAO Ran, ZHANG Mengying, XUE Ning, QI Zhimei. Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 630-636. doi: 10.3866/PKU.WHXB201806082 shu

Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity

  • Corresponding author: QI Zhimei, zhimei-qi@mail.ie.ac.cn
  • Received Date: 27 April 2018
    Revised Date: 4 June 2018
    Accepted Date: 5 June 2018
    Available Online: 8 June 2018

    Fund Project: National Natural Science Foundation of China 61675203The project was supported by the National Key Basic Research Program of China (973)(2015CB352100), National Natural Science Foundation of China (61675203) and Research Equipment Development Project of Chinese Academy of Sciences (YZ201508)The project was supported by the National Key Basic Research Program of China (973) 2015CB352100Research Equipment Development Project of Chinese Academy of Sciences YZ201508

  • This paper reports, for the first time, a gold-silver alloy film based broadband spectral surface plasmon resonance imaging (SPRI) sensor that enables in situ quantitative detection of chemical and biological molecules adsorbed on the partial or entire surface of the alloy film. The use of the gold-silver alloy film as the sensing layer makes the SPRI sensor lower in detection cost and higher in detection sensitivity as compared with the conventional sensor with a pure gold film. The gold-silver alloy films of ~50 nm thicknesses were deposited on glass substrates using a sputtering target made of gold (50%)-silver (50%, w, mass fraction) alloy. Both the SPR spectra and SPR color images for the gold-silver alloy films covered with pure water were measured at different incident angles using the laboratory-made Krestchmann-type multifunctional platform. The two-dimensional (2D) hue profile and the average hue for each SPR color image were obtained by calculation with the hue algorithm. Using the average hue as the sensitivity parameter, the spectral SPRI sensor enables quantitative detection. The spectral range in which the average hue is most sensitive to refractive index (RI) changes of bulk solution and to molecular adsorption was determined to be between 595 and 610 nm. In this narrow spectral range the average hue is linearly dependent on the resonant wavelength and its slope (representing the hue variation induced by per unit change in resonant wavelength) is Δhue/ΔλR = 7.52 nm-1, implying that the hue-based RI sensitivity is 7.52 times as high as the wavelength-based RI sensitivity. This implication was experimentally demonstrated in this work. After setting the initial resonant wavelength of the sensor in the hue-sensitive spectral range, the hue-based RI sensitivity of the SPRI sensor was measured to be S = 29879 RIU-1, which is 8 times higher than that obtained with the gold-film SPR chip under the same conditions (S = 3658 RIU-1 for the gold-film SPR chip). Nonspecific adsorption of bovine serum albumin (BSA) molecules on the gold-silver alloy film was monitored in real time by the time-resolved spectral SPRI method, and the temporal change in the average hue was obtained. The time required for BSA adsorption to reach equilibrium is determined to be about 15 min. This study illustrates that the gold-silver alloy film based SPRI sensor has the powerful capability of quantitative detection of sub-monomolecular adsorption of proteins.
  • 加载中
    1. [1]

      Yeatman, E.; Ash, E. A. Electron. Lett. 1987, 23 (20), 1091. doi: 10.1049/el:19870762  doi: 10.1049/el:19870762

    2. [2]

      Rothenhäusler, B.; Knoll, W. Nature 1988, 332 (6165), 615. doi: 10.1038/332615a0  doi: 10.1038/332615a0

    3. [3]

      Gobi, K. V.; Tanaka, H.; Shoyama, Y.; Miura, N. Biosens. Bioelectron. 2004, 20 (2), 350.  doi: 10.1016/j.bios.2004.02.003

    4. [4]

      Gifford, L. K.; Sendroiu, I. E.; Corn, R. M.; Lupták, A. J. Am. Chem. Soc. 2010, 132 (27), 9265. doi: 10.1021/ja103043p  doi: 10.1021/ja103043p

    5. [5]

      Zhou, W. J.; Halpern, A. R.; Seefeld, T. H.; Corn, R. M. Anal. Chem. 2012, 84 (1), 440. doi: 10.1021/ac202863k  doi: 10.1021/ac202863k

    6. [6]

      Yuk, J. S.; Kim, H. S.; Jung, J. W.; Jung, S. H.; Lee, S. J.; Kim, W. J.; Han, J. A.; Kim, Y. M.; Ha, K. S. Biosens. Bioelectron. 2008, 21 (8), 1521. doi: 10.1016/j.bios.2005.07.009  doi: 10.1016/j.bios.2005.07.009

    7. [7]

      Knobloch, H.; Woigk, S.; Helms, A.; Brehmer, L. Appl. Phys. Lett. 1996, 69 (16), 2336. doi: 10.1063/1.117516  doi: 10.1063/1.117516

    8. [8]

      Andersson, O.; Ulrich, C.; Bj refors, F.; Liedberg, B. Sens. Actuators B 2008, 134 (2), 545. doi: 10.1016/j.snb.2008.05.042  doi: 10.1016/j.snb.2008.05.042

    9. [9]

      Beusink, J. B.; Lokate, A. M.; Besselink, G. A.; Pruijn, G. J.; Schasfoort, R. B. Biosens. Bioelectron. 2008, 23 (6), 839. doi: 10.1016/j.bios.2007.08.025  doi: 10.1016/j.bios.2007.08.025

    10. [10]

      ) Zhang, P.; Liu, L.; He, Y.; Shen, Z. Y.; Guo, J. Appl. Opt. 2014, 53 (26), 6037. doi: 10.1364/AO.53.006037  doi: 10.1364/AO.53.006037

    11. [11]

      Ho, H. P.; Wong, C. L.; Chan, K. S.; Wu, S. Y.; Lin, C. Appl. Opt. 2006, 45 (23), 5819. doi: 10.1364/AO.45.005819  doi: 10.1364/AO.45.005819

    12. [12]

      Smith, A. R. Acm Siggraph Computer Graphics 1978, 12 (3), 12. doi: 10.1145/800248.807361  doi: 10.1145/800248.807361

    13. [13]

      Liang, J. Q.; Cui, D. F.; Cai, H. Y.; Wang, J. B.; Wang, Y. J. Transd. Microsys. Technol. 2006, 25 (10), 57.  doi: 10.3969/j.issn.1000-9787.2006.10.019

    14. [14]

      Liu, W.; Chen, Y. Chem. J. Chin. Univ. 2008, 29 (9), 1744.  doi: 10.3321/j.issn:0251-0790.2008.09.008

    15. [15]

      Yu, X. L.; Wang, D. X.; Yan, Z. B. Sens. Actuators B 2003, 91 (1–3), 285. doi: 10.1016/S0925-4005(03)00105-9  doi: 10.1016/S0925-4005(03)00105-9

    16. [16]

      Yu, X. L.; Ding, X.; Liu, F.; Deng, Y. Sens. Actuators B 2008, 130 (1), 52. doi: 10.1016/j.snb.2007.07.106  doi: 10.1016/j.snb.2007.07.106

    17. [17]

      Shen, G. Y.; Chen, Y.; Zhang, Y. M.; Chen, Y.; Cui, J. Prog. Chem. 2010, 22 (8), 1648.

    18. [18]

      Shen, G. Y.; Han, Z. Q.; Liu, W.; Chen, Y. Chem. J. Chin. Univ. 2007, 28 (9), 1651.  doi: 10.3321/j.issn:0251-0790.2007.09032

    19. [19]

      Fan, Z.B.; Gong, X. Q.; Lu, D. F.; Gao, R.; Deng, Y. H.; Qi, Z. M. Chin. J. Liq. Crys. Disp. 2017, 32 (5), 402.  doi: 10.3788/YJYXS20173205.0402

    20. [20]

      Fan, Z. B.; Gong, X. Q.; Lu, D. F.; Gao, R.; Qi, Z. M. Acta Phys. -Chim. Sin. 2017, 33 (5), 1001.  doi: 10.3866/PKU.WHXB201701131

    21. [21]

      ) Hodnik, V.; Anderluh, G. Sensors 2009, 9 (3), 1339. doi: 10.3390/s9031339  doi: 10.3390/s9031339

    22. [22]

      ) Alleyne, C. J.; Kirk, A. G.; McPhedran, R. C.; Nicorovici, N. A. P.; Maystre, D. Opt. Express. 2007, 15 (13), 8163. doi: 10.1364/OE.15.008163  doi: 10.1364/OE.15.008163

    23. [23]

      Manickam, G.; Gandhiraman, R.; Vijayaraghavan, R. K.; Kerr, L.; Doyle, C.; Williams, D. E.; Daniels, S. Analyst 2012, 137, 5265. doi: 10.1039/c2an35826c  doi: 10.1039/c2an35826c

    24. [24]

      Zhang, Z.; Liu, J.; Lu, D. F.; Qi, Z. M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1771.  doi: 10.3866/PKU.WHXB201407071

    25. [25]

      Zhang, Z.; Liu, Q.; Qi, Z. M. Acta Phys. Sin. 2013, 62 (6), 81.  doi: 10.7498/aps.62.060703

    26. [26]

      Liu, D. L.; Zhao, Q.; Lu, D. F.; Qi, Z. M. Chem. J. Chin. Univ. 2014, 35 (10), 2207.  doi: 10.7503/cjcu20140297

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    3. [3]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    10. [10]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    19. [19]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(6)
  • Abstract views(424)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return