Citation: HU Chao, MU Ye, LI Mingyu, QIU Jieshan. Recent Advances in the Synthesis and Applications of Carbon Dots[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 572-590. doi: 10.3866/PKU.WHXB201806060 shu

Recent Advances in the Synthesis and Applications of Carbon Dots

  • Corresponding author: QIU Jieshan, qiujs@mail.buct.edu.cn
  • Received Date: 27 June 2018
    Revised Date: 23 July 2018
    Accepted Date: 24 July 2018
    Available Online: 1 June 2018

    Fund Project: The project was supported by the Fundamental Research Funds for the Central Universities, China xjj2017083the Natural Science Basic Research Plan in Shanxi Province, China 2017JQ5027the National Natural Science Foundation of China U1710117the National Natural Science Foundation of China 51702254The project was supported by the Fundamental Research Funds for the Central Universities, China zrzd2017014The project was supported by the Fundamental Research Funds for the Central Universities, China (xjj2017083, zrzd2017014), the National Natural Science Foundation of China (51702254, U1710117), the China Postdoctoral Science Foundation (2016M602827), the Natural Science Basic Research Plan in Shanxi Province, China (2017JQ5027), and the Liaoning Province Doctoral Startup Grant (201501173)the China Postdoctoral Science Foundation 2016M602827the Liaoning Province Doctoral Startup Grant 201501173

  • Carbon atoms can bond together in different molecular configurations leading to different carbon allotropes including diamond, fullerene, carbon nanotubes, graphene, and graphdiyne that are widely used or explored in a number of fields. Carbon dots (CDs), which are generally surface-passivated carbon nanoparticles less than 10 nm in size, are other new members of carbon allotropes. CDs were serendipitously discovered in 2004 during the electrophoresis purification of single-walled carbon nanotubes. Similar to their popular older cousins, fullerenes, carbon nanotubes, and graphene, CDs have drawn much attention in the past decade and have gradually become a rising star because of the advantages of chemical inertness, high abundance, good biocompatibility, and low toxicity. Interestingly, CDs typically display excitation-energy- and size-dependent fluorescent behavior. Depending on their structures, the fluorescence from CDs is either attributed to the quantum-confinement effect and conjugated π-domains of the carbogenic core (intrinsic states), or determined by the hybridization of the carbon skeleton and the connected chemical groups (surface states). Compared with the traditional semiconductors, quantum dots, and their organic dye counterparts, fluorescent CDs possess not only excellent optical properties and small-size effect, but also the advantages of low-cost synthesis, good photo-bleaching resistance, tunable band gaps, and surface functionalities. For these reasons, CDs are considered to be emergent nanolights for bio-imaging, sensing, and optoelectronic devices. Additionally, CDs feature abundant structural defects at their surface and edges, excellent light-harvesting capability, and photo-induced electron-transfer ability, thus facilitating their applications in photocatalysis and energy storage and conversions. To date, remarkable progress has been achieved in terms of synthetic approaches, properties, and applications of CDs. This review aims to classify the different types of CDs, based on the structures of their carbogenic cores, and to describe their structural characteristics in terms of synthesis approaches. Two well-established strategies for synthesizing CDs, the top-down and bottom-up routes, are highlighted. The diverse potential applications, in the bio-imaging and diagnosis, sensing, catalysis, optoelectronics, and energy-storage fields, of CDs with different structures and physicochemical properties, are summarized, covering the issues of surface modification, heteroatom doping, and hybrids made by combining CDs with other species such as metals, metal oxides, and biological molecules. The challenges and opportunities for the future development of CDs are also briefly outlined.
  • 加载中
    1. [1]

      Zhan, J.; Geng, B.; Wu, K.; Xu, G.; Wang, L.; Guo, R.; Lei, B.; Zheng, F.; Pan, D.; Wu, M. Carbon 2018, 130, 153. doi: 10.1016/j.carbon.2017.12.075  doi: 10.1016/j.carbon.2017.12.075

    2. [2]

      Bao, L.; Liu, C.; Zhang, Z. -L.; Pang, D. -W. Adv. Mater. 2015, 27, 1663. doi: 10.1002/adma.201405070  doi: 10.1002/adma.201405070

    3. [3]

      Zhang, W.; Xu, T.; Liu, Z.; Wu, N. -L.; Wei, M. Chem. Commun. 2018, 54, 1413. doi: 10.1039/C7CC09406J  doi: 10.1039/C7CC09406J

    4. [4]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20, 4539. doi: 10.1021/cm800506r  doi: 10.1021/cm800506r

    5. [5]

      Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. J. Am. Chem. Soc. 2009, 131, 4564. doi: 10.1021/ja809073f  doi: 10.1021/ja809073f

    6. [6]

      Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736. doi: 10.1021/ja040082h  doi: 10.1021/ja040082h

    7. [7]

      Sun, Y. -P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; et al. J. Am. Chem. Soc. 2006, 128, 7756. doi: 10.1021/ja062677d  doi: 10.1021/ja062677d

    8. [8]

      Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Angew. Chem. Int. Ed. 2010, 49, 5310. doi: 10.1002/anie.201000982  doi: 10.1002/anie.201000982

    9. [9]

      Luo, P. G.; Sahu, S.; Yang, S. T.; Sonkar, S. K.; Wang, J.; Wang, H.; LeCroy, G. E.; Cao, L.; Sun, Y. -P. J. Mater. Chem. B 2013, 1, 2116. doi: 10.1039/c3tb00018d  doi: 10.1039/c3tb00018d

    10. [10]

      Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. Nano Res. 2015, 8, 355. doi: 10.1007/s12274-014-0644-3  doi: 10.1007/s12274-014-0644-3

    11. [11]

      Liu, H. P.; Ye, T.; Mao, C. D. Angew. Chem. Int. Ed. 2007, 46, 6473. doi: 10.1002/anie.200701271  doi: 10.1002/anie.200701271

    12. [12]

      Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G. Carbon 2012, 50, 4738. doi: 10.1016/j.carbon.2012.06.002  doi: 10.1016/j.carbon.2012.06.002

    13. [13]

      Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Chem. Commun. 2008, 5116. doi: 10.1039/b812420e  doi: 10.1039/b812420e

    14. [14]

      Zhou, J. G.; Booker, C.; Li, R. Y.; Zhou, X. T.; Sham, T. K.; Sun, X. L.; Ding, Z. F. J. Am. Chem. Soc. 2007, 129, 744. doi: 10.1021/ja0669070  doi: 10.1021/ja0669070

    15. [15]

      Jaiswal, A.; Ghosh, S. S.; Chattopadhyay, A. Chem. Commun. 2012, 48, 407. doi: 10.1039/C1CC15988G  doi: 10.1039/C1CC15988G

    16. [16]

      Zhu, C.; Zhai, J.; Dong, S. Chem. Commun. 2012, 48, 9367. doi: 10.1039/c2cc33844k  doi: 10.1039/c2cc33844k

    17. [17]

      Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Dalton Trans. 2012, 41, 9526. doi: 10.1039/c2dt30985h  doi: 10.1039/c2dt30985h

    18. [18]

      Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J. J. Mater. Chem. B 2013, 1, 39. doi: 10.1039/c2tb00189f  doi: 10.1039/c2tb00189f

    19. [19]

      Li, H.; Sun, C.; Vijayaraghavan, R.; Zhou, F.; Zhang, X.; MacFarlane, D. R. Carbon 2016, 104, 33. doi: 10.1016/j.carbon.2016.03.040  doi: 10.1016/j.carbon.2016.03.040

    20. [20]

      Peng, H.; Travas-Sejdic, J. Chem. Mater. 2009, 21, 5563. doi: 10.1021/cm901593y  doi: 10.1021/cm901593y

    21. [21]

      Mei, Q.; Zhang, K.; Guan, G.; Liu, B.; Wang, S.; Zhang, Z. Chem. Commun. 2010, 46, 7319. doi: 10.1039/c0cc02374d  doi: 10.1039/c0cc02374d

    22. [22]

      Wang, F.; Pang, S.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. -Y. Chem. Mater. 2010, 22, 4528. doi: 10.1021/cm101350u  doi: 10.1021/cm101350u

    23. [23]

      Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. J. Phys. Chem. B 2005, 110, 831. doi: 10.1021/jp055503b  doi: 10.1021/jp055503b

    24. [24]

      Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Adv. Mater. 2011, 23, 5801. doi: 10.1002/adma.201102866  doi: 10.1002/adma.201102866

    25. [25]

      Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. J. Am. Chem. Soc. 2012, 134, 15. doi: 10.1021/ja206030c  doi: 10.1021/ja206030c

    26. [26]

      Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Angew. Chem. Int. Ed. 2010, 49, 4430. doi: 10.1002/anie.200906154  doi: 10.1002/anie.200906154

    27. [27]

      Hu, C.; Yu, C.; Li, M.; Wang, X.; Dong, Q.; Wang, G.; Qiu, J. Chem. Commun. 2015, 51, 3419. doi: 10.1039/C4CC08735F  doi: 10.1039/C4CC08735F

    28. [28]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; et al. Nano Lett. 2012, 12, 844. doi: 10.1021/nl2038979  doi: 10.1021/nl2038979

    29. [29]

      Hu, C.; Yu, C.; Li, M.; Wang, X.; Yang, J.; Zhao, Z.; Eychmüller, A.; Sun, Y. P.; Qiu, J. Small 2014, 10, 4926. doi: 10.1002/smll.201401328  doi: 10.1002/smll.201401328

    30. [30]

      Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z. Small 2012, 8, 281. doi: 10.1002/smll.201101706  doi: 10.1002/smll.201101706

    31. [31]

      Chen, W.; Li, F.; Wu, C.; Guo, T. Appl. Phys. Lett. 2014, 104, 063109. doi: 10.1063/1.4863963  doi: 10.1063/1.4863963

    32. [32]

      Dong, Y.; Chen, C.; Zheng, X.; Gao, L.; Cui, Z.; Yang, H.; Guo, C.; Chi, Y.; Li, C. M. J. Mater. Chem. 2012, 22, 8764. doi: 10.1039/C2JM30658A  doi: 10.1039/C2JM30658A

    33. [33]

      Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Chem. Commun. 2010, 46, 3681. doi: 10.1039/c000114g  doi: 10.1039/c000114g

    34. [34]

      Callan, J. F.; Fowley, C. P.; McCaughan, B.; Devlin, A. Chem. Commun. 2012, 48, 9361. doi: 10.1039/c2cc34962k  doi: 10.1039/c2cc34962k

    35. [35]

      Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. Angew. Chem. Int. Ed. 2009, 48, 4598. doi: 10.1002/anie.200900652  doi: 10.1002/anie.200900652

    36. [36]

      Lai, C. -W.; Hsiao, Y. H.; Peng, Y. -K.; Chou, P. T. J. Mater. Chem. 2012, 22, 14403. doi: 10.1039/c2jm32206d  doi: 10.1039/c2jm32206d

    37. [37]

      Lin, P. -Y.; Hsieh, C. -W.; Kung, M. -L.; Hsieh, S. Sci. Rep. 2013, 3, 1703. doi: 10.1038/srep01703  doi: 10.1038/srep01703

    38. [38]

      Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 45, 5118. doi: 10.1039/b907612c  doi: 10.1039/b907612c

    39. [39]

      Zhai, X.; Zhang, P.; Liu, C.; Bai, T.; Li, W.; Dai, L.; Liu, W. Chem. Commun. 2012, 48, 7955. doi: 10.1039/c2cc33869f  doi: 10.1039/c2cc33869f

    40. [40]

      Pan, L.; Sun, S.; Zhang, A.; Jiang, K.; Zhang, L.; Dong, C.; Huang, Q.; Wu, A.; Lin, H. Adv. Mater. 2015, 27, 7782. doi: 10.1002/adma.201503821  doi: 10.1002/adma.201503821

    41. [41]

      Rahy, A.; Zhou, C.; Zheng, J.; Park, S. Y.; Kim, M. J.; Jang, I.; Cho, S. J.; Yang, D. J. Carbon 2012, 50, 1298. doi: 10.1016/j.carbon.2011.10.052  doi: 10.1016/j.carbon.2011.10.052

    42. [42]

      Sahoo, B. N.; Kandasubramanian, B. RSC Adv. 2014, 4, 11331. doi: 10.1039/C3RA46193A  doi: 10.1039/C3RA46193A

    43. [43]

      Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. J. Mater. Chem. C 2015, 3, 5976. doi: 10.1039/C5TC00813A  doi: 10.1039/C5TC00813A

    44. [44]

      Zhu, S.; Zhao, X.; Song, Y.; Lu, S.; Yang, B. Nano Today 2016, 11, 128. doi: 10.1016/j.nantod.2015.09.002  doi: 10.1016/j.nantod.2015.09.002

    45. [45]

      Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; et al. Nat. Commun. 2014, 5, 5357. doi: 10.1038/ncomms6357  doi: 10.1038/ncomms6357

    46. [46]

      Hsu, P. C.; Chang, H. T. Chem. Commun. 2012, 48, 3984. doi: 10.1039/c2cc30188a  doi: 10.1039/c2cc30188a

    47. [47]

      Yao, S.; Hu, Y.; Li, G. Carbon 2014, 66, 77. doi: 10.1016/j.carbon.2013.08.044  doi: 10.1016/j.carbon.2013.08.044

    48. [48]

      Zhu, X.; Wang, H.; Jiao, Q.; Xiao, X.; Zuo, X.; Liang, Y.; Nan, J.; Wang, J.; Wang, L. Part. Part. Syst. Char. 2014, 31, 771. doi: 10.1002/ppsc.201300327  doi: 10.1002/ppsc.201300327

    49. [49]

      Zong, J.; Zhu, Y.; Yang, X.; Shen, J.; Li, C. Chem. Commun. 2011, 47, 764. doi: 10.1039/c0cc03092a  doi: 10.1039/c0cc03092a

    50. [50]

      Kwon, W.; Do, S.; Rhee, S. -W. RSC Adv. 2012, 2, 11223. doi: 10.1039/c2ra22186a  doi: 10.1039/c2ra22186a

    51. [51]

      Kwon, W.; Rhee, S. -W. Chem. Commun. 2012, 48, 5256. doi: 10.1039/c2cc31687k  doi: 10.1039/c2cc31687k

    52. [52]

      Zhu, S.; Song, Y.; Shao, J.; Zhao, X.; Yang, B. Angew. Chem. Int. Ed. 2015, 54, 14626. doi: 10.1002/anie.201504951  doi: 10.1002/anie.201504951

    53. [53]

      Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22, 734. doi: 10.1002/adma.200902825  doi: 10.1002/adma.200902825

    54. [54]

      Ding, H.; Cheng, L. -W.; Ma, Y. -Y.; Kong, J. -L.; Xiong, H. -M. New J. Chem. 2013, 37, 2515. doi: 10.1039/C3NJ00366C  doi: 10.1039/C3NJ00366C

    55. [55]

      Sun, J.; Yang, S.; Wang, Z.; Shen, H.; Xu, T.; Sun, L.; Li, H.; Chen, W.; Jiang, X.; Ding, G.; et al. Part. Part. Syst. Char. 2014, 32, 434. doi: 10.1002/ppsc.201400189  doi: 10.1002/ppsc.201400189

    56. [56]

      Zhuo, S.; Shao, M.; Lee, S. T. ACS Nano 2012, 6, 1059. doi: 10.1021/nn2040395  doi: 10.1021/nn2040395

    57. [57]

      Buzaglo, M.; Shtein, M.; Regev, O. Chem. Mater. 2016, 28, 21. doi: 10.1021/acs.chemmater.5b03301  doi: 10.1021/acs.chemmater.5b03301

    58. [58]

      Zhang, J.; Shen, W.; Pan, D.; Zhang, Z.; Fang, Y.; Wu, M. New J. Chem. 2010, 34, 591. doi: 10.1039/b9nj00662a  doi: 10.1039/b9nj00662a

    59. [59]

      Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Sci. Rep. 2013, 3, 1473. doi: 10.1038/srep01473  doi: 10.1038/srep01473

    60. [60]

      Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y.; Huang, T.; Hong, X.; et al. Nanoscale 2013, 5, 1967. doi: 10.1039/C2NR32675B  doi: 10.1039/C2NR32675B

    61. [61]

      Chen, Q. L.; Wang, C. F.; Chen, S. J. Mater. Sci. 2013, 48, 2352. doi: 10.1007/s10853-012-7016-8  doi: 10.1007/s10853-012-7016-8

    62. [62]

      Wu, X.; Tian, F.; Wang, W.; Chen, J.; Wu, M.; Zhao, J. X. J. Mater. Chem. C 2013, 1, 4676. doi: 10.1039/C3TC30820K  doi: 10.1039/C3TC30820K

    63. [63]

      Hsu, P. C.; Chen, P. C.; Ou, C. M.; Chang, H. Y.; Chang, H. T. J. Mater. Chem. B 2013, 1, 1774. doi: 10.1039/c3tb00545c  doi: 10.1039/c3tb00545c

    64. [64]

      Zhu, L.; Yin, Y.; Wang, C. -F.; Chen, S. J. Mater. Chem. C 2013, 1, 4925. doi: 10.1039/C3TC30701H  doi: 10.1039/C3TC30701H

    65. [65]

      Hsu, P. C.; Shih, Z. Y.; Lee, C. H.; Chang, H. T. Green Chem. 2012, 14, 917. doi: 10.1039/c2gc16451e  doi: 10.1039/c2gc16451e

    66. [66]

      Liu, J. L.; Lin, L. Z.; Hu, J. F.; Bai, M. J.; Chen, L. X.; Wei, J. J.; Hei, L. F.; Li, C. M. Acta Phys. -Chim. Sin. 2018, 34, 92.  doi: 10.3866/PKU.WHXB201706221

    67. [67]

      Wang, Z.; Lu, Y.; Yuan, H.; Ren, Z.; Xu, C.; Chen, J. Nanoscale 2015, 7, 20743. doi: 10.1039/C5NR05804J  doi: 10.1039/C5NR05804J

    68. [68]

      Li, F.; Li, Y.; Yang, X.; Han, X.; Jiao, Y.; Wei, T.; Yang, D.; Xu, H.; Nie, G. Angew. Chem. Int. Ed. 2018, 57, 2377. doi: 10.1002/anie.201712453  doi: 10.1002/anie.201712453

    69. [69]

      Li, H.; Ming, H.; Liu, Y.; Yu, H.; He, X.; Huang, H.; Pan, K.; Kang, Z.; Lee, S. -T. New J. Chem. 2011, 35, 2666. doi: 10.1039/c1nj20575g  doi: 10.1039/c1nj20575g

    70. [70]

      Niu, F.; Xu, Y.; Liu, M.; Sun, J.; Guo, P.; Liu, J. Nanoscale 2016, 8, 5470. doi: 10.1039/C6NR00023A  doi: 10.1039/C6NR00023A

    71. [71]

      Yang, W.; Zhang, H.; Lai, J.; Peng, X.; Hu, Y.; Gu, W.; Ye, L. Carbon 2018, 128, 78. doi: 10.1016/j.carbon.2017.11.069  doi: 10.1016/j.carbon.2017.11.069

    72. [72]

      Ding, H.; Ji, Y.; Wei, J. -S.; Gao, Q. -Y.; Zhou, Z. -Y.; Xiong, H. -M. J. Mater. Chem. B 2017, 5, 5272. doi: 10.1039/C7TB01130J  doi: 10.1039/C7TB01130J

    73. [73]

      Ruan, S.; Zhu, B.; Zhang, H.; Chen, J.; Shen, S.; Qian, J.; He, Q.; Gao, H. J. Colloid Interface Sci. 2014, 422, 25. doi: 10.1016/j.jcis.2014.02.006  doi: 10.1016/j.jcis.2014.02.006

    74. [74]

      Shi, L.; Li, Y.; Li, X.; Wen, X.; Zhang, G.; Yang, J.; Dong, C.; Shuang, S. Nanoscale 2015, 7, 7394. doi: 10.1039/C5NR00783F  doi: 10.1039/C5NR00783F

    75. [75]

      Zheng, M.; Ruan, S.; Liu, S.; Sun, T.; Qu, D.; Zhao, H.; Xie, Z.; Gao, H.; Jing, X.; Sun, Z. ACS Nano 2015, 9, 11455. doi: 10.1021/acsnano.5b05575  doi: 10.1021/acsnano.5b05575

    76. [76]

      Huang, X.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q.; et al. ACS Nano 2013, 7, 5684. doi: 10.1021/nn401911k  doi: 10.1021/nn401911k

    77. [77]

      Liu, J. -H.; Cao, L.; LeCroy, G. E.; Wang, P.; Meziani, M. J.; Dong, Y.; Liu, Y.; Luo, P. G.; Sun, Y. -P. ACS Appl. Mater. Interfaces 2015, 7, 19439. doi: 10.1021/acsami.5b05665  doi: 10.1021/acsami.5b05665

    78. [78]

      Yang, X.; Yang, X.; Li, Z.; Li, S.; Han, Y.; Chen, Y.; Bu, X.; Su, C.; Xu, H.; Jiang, Y.; et al. J. Colloid Interface Sci. 2015, 456, 1. doi: 10.1016/j.jcis.2015.06.002  doi: 10.1016/j.jcis.2015.06.002

    79. [79]

      Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; et al. J. Am. Chem. Soc. 2007, 129, 11318. doi: 10.1021/ja073527l  doi: 10.1021/ja073527l

    80. [80]

      Tong, G.; Wang, J.; Wang, R.; Guo, X.; He, L.; Qiu, F.; Wang, G.; Zhu, B.; Zhu, X.; Liu, T. J. Mater. Chem. B 2015, 3, 700. doi: 10.1039/C4TB01643B  doi: 10.1039/C4TB01643B

    81. [81]

      Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J. R. Nano Lett. 2013, 13, 2436. doi: 10.1021/nl400368v  doi: 10.1021/nl400368v

    82. [82]

      Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; et al. Adv. Mater. 2018, 30, 1705913. doi: 10.1002/adma.201705913  doi: 10.1002/adma.201705913

    83. [83]

      Zhao, H.; Duan, J.; Xiao, Y.; Tang, G.; Wu, C.; Zhang, Y.; Liu, Z.; Xue, W. Chem. Mater. 2018, 30, 3438. doi: 10.1021/acs.chemmater.8b01011  doi: 10.1021/acs.chemmater.8b01011

    84. [84]

      Sun, J.; Xin, Q.; Yang, Y.; Shah, H.; Cao, H.; Qi, Y.; Gong, J. R.; Li, J. Chem. Commun. 2018, 54, 715. doi: 10.1039/C7CC08820E  doi: 10.1039/C7CC08820E

    85. [85]

      Rakovich, A.; Rakovich, T. J. Mater. Chem. B 2018, 6, 2690. doi: 10.1039/C8TB00153G  doi: 10.1039/C8TB00153G

    86. [86]

      Ding, H.; Du, F.; Liu, P.; Chen, Z.; Shen, J. ACS Appl. Mater. Interfaces 2015, 7, 6889. doi: 10.1021/acsami.5b00628  doi: 10.1021/acsami.5b00628

    87. [87]

      Wang, Z.; Liao, H.; Wu, H.; Wang, B.; Zhao, H.; Tan, M. Anal. Methods 2015, 7, 8911. doi: 10.1039/C5AY01978H  doi: 10.1039/C5AY01978H

    88. [88]

      Choi, Y.; Kim, S.; Choi, M. -H.; Ryoo, S. -R.; Park, J.; Min, D. -H.; Kim, B. -S. Adv. Funct. Mater. 2014, 24, 5781. doi: 10.1002/adfm.201400961  doi: 10.1002/adfm.201400961

    89. [89]

      Wang, J.; Zhang, Z.; Zha, S.; Zhu, Y.; Wu, P.; Ehrenberg, B.; Chen, J. -Y. Biomaterials 2014, 35, 9372. doi: 10.1016/j.biomaterials.2014.07.063  doi: 10.1016/j.biomaterials.2014.07.063

    90. [90]

      Guo, M.; Xiang, H. J.; Wang, Y.; Zhang, Q.; An, L.; Yang, S.; Ma, Y.; Wang, Y. C.; Liu, J. G. Chem. Commun. 2017, 53, 3253. doi: 10.1039/C7CC00670E  doi: 10.1039/C7CC00670E

    91. [91]

      Jia, Q.; Ge, J.; Liu, W.; Zheng, X.; Chen, S.; Wen, Y.; Zhang, H.; Wang, P. Adv. Mater. 2018, 30, 1706090. doi: 10.1002/adma.201706090  doi: 10.1002/adma.201706090

    92. [92]

      Shen, C.; Ge, S.; Pang, Y.; Xi, F.; Liu, J.; Dong, X.; Chen, P. J. Mater. Chem. B 2017, 5, 6593. doi: 10.1039/C7TB00506G  doi: 10.1039/C7TB00506G

    93. [93]

      Lu, W.; Gao, Y.; Jiao, Y.; Shuang, S.; Li, C.; Dong, C. Nanoscale 2017. doi: 10.1039/C7NR02336G  doi: 10.1039/C7NR02336G

    94. [94]

      Chen, B. B.; Li, R.; Liu, M. L.; Zhang, H. Z.; Huang, C. Z. Chem. Commun. 2017. doi: 10.1039/C7CC00546F  doi: 10.1039/C7CC00546F

    95. [95]

      Gao, G.; Jiang, Y. -W.; Jia, H. -R.; Yang, J.; Wu, F. -G. Carbon 2018, 134, 232. doi: 10.1016/j.carbon.2018.02.063  doi: 10.1016/j.carbon.2018.02.063

    96. [96]

      Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhao, X. J.; Huang, C. Z. Chem. Commun. 2011, 47, 2604. doi: 10.1039/c0cc04399k  doi: 10.1039/c0cc04399k

    97. [97]

      Lin, Z.; Xue, W.; Chen, H.; Lin, J. M. Anal. Chem. 2011, 83, 8245. doi: 10.1021/ac202039h  doi: 10.1021/ac202039h

    98. [98]

      Zhang, H.; Li, Y.; Liu, X.; Liu, P.; Wang, Y.; An, T.; Yang, H.; Jing, D.; Zhao, H. Environ. Sci. Technol. Lett. 2013, 1, 87. doi: 10.1021/ez400137j  doi: 10.1021/ez400137j

    99. [99]

      Bai, J. -M.; Zhang, L.; Liang, R. -P.; Qiu, J. -D. Chem. Eur. J. 2013, 19, 3822. doi: 10.1002/chem.201204295  doi: 10.1002/chem.201204295

    100. [100]

      Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Chem. Commun. 2011, 47, 6695. doi: 10.1039/c1cc11943e  doi: 10.1039/c1cc11943e

    101. [101]

      Yan, Y.; Li, H.; Wang, Q.; Mao, H.; Wang, K. J. Mater. Chem. C 2017, 5, 6092. doi: 10.1039/C7TC01342F  doi: 10.1039/C7TC01342F

    102. [102]

      Hu, J.; Zou, C.; Su, Y.; Li, M.; Hu, N.; Ni, H.; Yang, Z.; Zhang, Y. J. Mater. Chem. C 2017, 5, 6862. doi: 10.1039/C7TC01208J  doi: 10.1039/C7TC01208J

    103. [103]

      Sun, X.; He, J.; Meng, Y.; Zhang, L.; Zhang, S.; Ma, X.; Dey, S.; Zhao, J.; Lei, Y. J. Mater. Chem. A 2016, 4, 4161. doi: 10.1039/C5TA10027E  doi: 10.1039/C5TA10027E

    104. [104]

      Miao, H.; Wang, Y.; Yang, X. Nanoscale 2018, 10, 8139. doi: 10.1039/C8NR02405G  doi: 10.1039/C8NR02405G

    105. [105]

      Dai, H.; Yang, C.; Tong, Y.; Xu, G.; Ma, X.; Lin, Y.; Chen, G. Chem. Commun. 2012, 48, 3055. doi: 10.1039/C1CC16571B  doi: 10.1039/C1CC16571B

    106. [106]

      Loo, A. H.; Sofer, Z.; Bouša, D.; Ulbrich, P.; Bonanni, A.; Pumera, M. ACS Appl. Mater. Interfaces 2016, 8, 1951. doi: 10.1021/acsami.5b10160  doi: 10.1021/acsami.5b10160

    107. [107]

      Huan, H.; Li, P.; Zhang, M.; Yu, Y.; Huang, Y.; Gu, H.; Wang, C.; Yang, Y. Nanoscale 2017, 9, 5044. doi: 10.1039/C6NR10017A  doi: 10.1039/C6NR10017A

    108. [108]

      Jurado-Sánchez, B.; Pacheco, M.; Rojo, J.; Escarpa, A. Angew. Chem. Int. Ed. 2017, 56, 6957. doi: 10.1002/anie.201701396  doi: 10.1002/anie.201701396

    109. [109]

      Liu, G.; Zhang, K.; Ma, K.; Care, A.; Hutchinson, M. R.; Goldys, E. M. Nanoscale 2017, 9, 4934. doi: 10.1039/C6NR09381G  doi: 10.1039/C6NR09381G

    110. [110]

      Kalytchuk, S.; Poláková, K.; Wang, Y.; Froning, J. P.; Cepe, K.; Rogach, A. L.; Zbořil, R. ACS Nano 2017, 11, 1432. doi: 10.1021/acsnano.6b06670  doi: 10.1021/acsnano.6b06670

    111. [111]

      Liu, J.; Ren, X.; Yan, Y.; Wang, N.; Wang, S.; Zhang, H.; Li, J.; Yu, J. Inorg. Chem. Front. 2018, 5, 139. doi: 10.1039/C7QI00602K  doi: 10.1039/C7QI00602K

    112. [112]

      Wei, L.; Ma, Y.; Shi, X.; Wang, Y.; Su, X.; Yu, C.; Xiang, S.; Xiao, L.; Chen, B. J. Mater. Chem. B 2017, 5, 3383. doi: 10.1039/C7TB00309A  doi: 10.1039/C7TB00309A

    113. [113]

      Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Chem. Commun. 2012, 48, 1147. doi: 10.1039/c2cc16791c  doi: 10.1039/c2cc16791c

    114. [114]

      Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Angew. Chem. Int. Ed. 2012, 51, 7185. doi: 10.1002/anie.201109089  doi: 10.1002/anie.201109089

    115. [115]

      Lu, W.; Qin, X.; Asiri, A.; Al-Youbi, A.; Sun, X. J. Nanopart. Res. 2012, 15, 1. doi: 10.1007/s11051-012-1344-0  doi: 10.1007/s11051-012-1344-0

    116. [116]

      Xu, Q.; Pu, P.; Zhao, J.; Dong, C.; Gao, C.; Chen, Y.; Chen, J.; Liu, Y.; Zhou, H. J. Mater. Chem. A 2015, 3, 542. doi: 10.1039/C4TA05483K  doi: 10.1039/C4TA05483K

    117. [117]

      Liu, J. M.; Lin, L. P.; Wang, X. X.; Jiao, L.; Cui, M. L.; Jiang, S. L.; Cai, W. L.; Zhang, L. H.; Zheng, Z. Y. Analyst 2013, 138, 278. doi: 10.1039/c2an36055a  doi: 10.1039/c2an36055a

    118. [118]

      Cayuela, A.; Carrillo-Carrión, C.; Soriano, M. L.; Parak, W. J.; Valcárcel, M. Anal. Chem. 2016, 88, 3178. doi: 10.1021/acs.analchem.5b04523  doi: 10.1021/acs.analchem.5b04523

    119. [119]

      Zhang, H.; Zhang, X.; Dong, S. Anal. Chem. 2015, 87, 11167. doi: 10.1021/acs.analchem.5b02562  doi: 10.1021/acs.analchem.5b02562

    120. [120]

      Jiang, B. P.; Zhou, B.; Shen, X. C.; Yu, Y. X.; Ji, S. C.; Wen, C. C.; Liang, H. Chem. Eur. J. 2015, 21, 18993. doi: 10.1002/chem.201502731  doi: 10.1002/chem.201502731

    121. [121]

      Lan, M.; Di, Y.; Zhu, X.; Ng, T. W.; Xia, J.; Liu, W.; Meng, X.; Wang, P.; Lee, C. S.; Zhang, W. Chem. Commun. 2015, 51, 15574. doi: 10.1039/C5CC05835J  doi: 10.1039/C5CC05835J

    122. [122]

      Zhao, H.; Chang, Y.; Liu, M.; Gao, S.; Yu, H.; Quan, X. Chem. Commun. 2013, 49, 234. doi: 10.1039/c2cc35503e  doi: 10.1039/c2cc35503e

    123. [123]

      Wang, C. I.; Periasamy, A. P.; Chang, H. T. Anal. Chem. 2013, 85, 3263. doi: 10.1021/ac303613d  doi: 10.1021/ac303613d

    124. [124]

      Li, H.; Kang, Z.; Liu, Y.; Lee, S. -T. J. Mater. Chem. 2012, 22, 24230. doi: 10.1039/C2JM34690G  doi: 10.1039/C2JM34690G

    125. [125]

      Feng, C.; Deng, X. Y.; Ni, X. X.; Li, W. B. Acta Phys. -Chim. Sin. 2015, 31, 2349.  doi: 10.3866/pku.whxb201510281

    126. [126]

      Zhang, H.; Ming, H.; Lian, S.; Huang, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z.; Lee, S. T. Dalton Trans. 2011, 40, 10822. doi: 10.1039/c1dt11147g  doi: 10.1039/c1dt11147g

    127. [127]

      Han, X.; Han, Y.; Huang, H.; Zhang, H.; Zhang, X.; Liu, R.; Liu, Y.; Kang, Z. Dalton Trans. 2013, 42, 10380. doi: 10.1039/C3DT51165K  doi: 10.1039/C3DT51165K

    128. [128]

      Yu, H.; Zhang, H.; Huang, H.; Liu, Y.; Li, H.; Ming, H.; Kang, Z. New J. Chem. 2012, 36, 1031. doi: 10.1039/c2nj20959d  doi: 10.1039/c2nj20959d

    129. [129]

      Li, H.; Liu, R.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S.; Lee, S. -T.; Kang, Z. J. Mater. Chem. 2012, 22, 17470. doi: 10.1039/C2JM32827E  doi: 10.1039/C2JM32827E

    130. [130]

      Di, J.; Xia, J.; Ji, M.; Xu, L.; Yin, S.; Zhang, Q.; Chen, Z.; Li, H. Carbon 2016, 98, 613. doi: 10.1016/j.carbon.2015.11.015  doi: 10.1016/j.carbon.2015.11.015

    131. [131]

      Li, Z.; Zhu, L.; Wu, W.; Wang, S.; Qiang, L. Appl. Catal. B-Environ. 2016, 192, 277. doi: 10.1016/j.apcatb.2016.03.045  doi: 10.1016/j.apcatb.2016.03.045

    132. [132]

      Wu, W.; Zhan, L.; Fan, W.; Song, J.; Li, X.; Li, Z.; Wang, R.; Zhang, J.; Zheng, J.; Wu, M.; et al. Angew. Chem. Int. Ed. 2015, 54, 6540. doi: 10.1002/anie.201501912  doi: 10.1002/anie.201501912

    133. [133]

      Zhang, Q.; Xu, W.; Han, C.; Wang, X.; Wang, Y.; Li, Z.; Wu, W.; Wu, M. Carbon 2018, 126, 128. doi: 10.1016/j.carbon.2017.10.006  doi: 10.1016/j.carbon.2017.10.006

    134. [134]

      Wu, W.; Zhang, Q.; Wang, R.; Zhao, Y.; Li, Z.; Ning, H.; Zhao, Q.; Wiederrecht, G. P.; Qiu, J.; Wu, M. ACS Catal. 2018, 8, 747. doi: 10.1021/acscatal.7b03423  doi: 10.1021/acscatal.7b03423

    135. [135]

      Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347, 970. doi: 10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    136. [136]

      Zou, J. -P.; Wang, L. -C.; Luo, J.; Nie, Y. -C.; Xing, Q. -J.; Luo, X. -B.; Du, H. -M.; Luo, S. -L.; Suib, S. L. Appl. Catal. B-Environ. 2016, 193, 103. doi: 10.1016/j.apcatb.2016.04.017  doi: 10.1016/j.apcatb.2016.04.017

    137. [137]

      Fang, S.; Xia, Y.; Lv, K.; Li, Q.; Sun, J.; Li, M. Appl. Catal. B-Environ. 2016, 185, 225. doi: 10.1016/j.apcatb.2015.12.025  doi: 10.1016/j.apcatb.2015.12.025

    138. [138]

      Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. -P. J. Am. Chem. Soc. 2011, 133, 4754. doi: 10.1021/ja200804h  doi: 10.1021/ja200804h

    139. [139]

      Li, H.; Zhang, X.; MacFarlane, D. R. Adv. Energy Mater. 2015, 5, 1401077. doi: 10.1002/aenm.201401077  doi: 10.1002/aenm.201401077

    140. [140]

      Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.; Durrant, J. R.; Reisner, E. Angew. Chem. Int. Ed. 2017, 56, 6459. doi: 10.1002/anie.201700949  doi: 10.1002/anie.201700949

    141. [141]

      Wang, D. -W.; Su, D. Energy Environ. Sci. 2014, 7, 576. doi: 10.1039/C3EE43463J  doi: 10.1039/C3EE43463J

    142. [142]

      Tam, T. V.; Kang, S. G.; Kadumudi, F. B.; Oh, E.; Lee, S. G.; Choi, W. M. J. Mater. Chem. A 2017, 5, 10537. doi: 10.1039/C7TA01485F  doi: 10.1039/C7TA01485F

    143. [143]

      Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.; Fan, X.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. ACS Nano 2014, 8, 10837. doi: 10.1021/nn504637y  doi: 10.1021/nn504637y

    144. [144]

      Gao, S.; Chen, Y.; Fan, H.; Wei, X.; Hu, C.; Wang, L.; Qu, L. J. Mater. Chem. A 2014, 2, 6320. doi: 10.1039/C3TA15443B  doi: 10.1039/C3TA15443B

    145. [145]

      Liu, J.; Zhao, S.; Li, C.; Yang, M.; Yang, Y.; Liu, Y.; Lifshitz, Y.; Lee, S. -T.; Kang, Z. Adv. Energy Mater. 2016, 6, 1502039. doi: 10.1002/aenm.201502039  doi: 10.1002/aenm.201502039

    146. [146]

      Rao, Y.; Ning, H.; Ma, X.; Liu, Y.; Wang, Y.; Liu, H.; Liu, J.; Zhao, Q.; Wu, M. Carbon 2018, 129, 335. doi: 10.1016/j.carbon.2017.12.040  doi: 10.1016/j.carbon.2017.12.040

    147. [147]

      Lv, J. J.; Zhao, J.; Fang, H.; Jiang, L. P.; Li, L. -L.; Ma, J.; Zhu, J. J. Small 2017, 13, 1700264. doi: 10.1002/smll.201700264  doi: 10.1002/smll.201700264

    148. [148]

      Wu, J.; Ma, S.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; et al. Nat. Commun. 2016, 7, 13869. doi: 10.1038/ncomms13869  doi: 10.1038/ncomms13869

    149. [149]

      Guo, S.; Zhao, S.; Gao, J.; Zhu, C.; Wu, X.; Fu, Y.; Huang, H.; Liu, Y.; Kang, Z. Nanoscale 2017, 9, 298. doi: 10.1039/C6NR08104E  doi: 10.1039/C6NR08104E

    150. [150]

      Fu, J.; Wang, Y.; Liu, J.; Huang, K.; Chen, Y.; Li, Y.; Zhu, J. -J. ACS Energy Lett. 2018, 3, 946. doi: 10.1021/acsenergylett.8b00261  doi: 10.1021/acsenergylett.8b00261

    151. [151]

      Sim, U.; Moon, J.; An, J.; Kang, J. H.; Jerng, S. E.; Moon, J.; Cho, S. -P.; Hong, B. H.; Nam, K. T. Energy Environ. Sci. 2015, 8, 1329. doi: 10.1039/C4EE03607G  doi: 10.1039/C4EE03607G

    152. [152]

      Chen, D.; Dai, S.; Su, X.; Xin, Y.; Zou, S.; Wang, X.; Kang, Z.; Shen, M. Chem. Commun. 2015, 51, 15340. doi: 10.1039/C5CC05599G  doi: 10.1039/C5CC05599G

    153. [153]

      Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Adv. Energy Mater. 2013, 3, 997. doi: 10.1002/aenm.201300171  doi: 10.1002/aenm.201300171

    154. [154]

      Shi, W.; Zhang, X.; Brillet, J.; Huang, D.; Li, M.; Wang, M.; Shen, Y. Carbon 2016, 105, 387. doi: 10.1016/j.carbon.2016.04.051  doi: 10.1016/j.carbon.2016.04.051

    155. [155]

      Zhang, P.; Wang, T.; Chang, X.; Zhang, L.; Gong, J. Angew. Chem. Int. Ed. 2016, 55, 5851. doi: 10.1002/anie.201600918  doi: 10.1002/anie.201600918

    156. [156]

      Ye, K.; Wang, Z.; Gu, J.; xiao, S.; Yuan, Y.; Zhu, Y.; Zhang, Y.; Mai, W.; Yang, S. Energy Environ. Sci. 2017, 10, 772. doi: 10.1039/C6EE03442J  doi: 10.1039/C6EE03442J

    157. [157]

      Sun, H.; Zhao, A.; Gao, N.; Li, K.; Ren, J.; Qu, X. Angew. Chem. Int. Ed. 2015, 54, 7176. doi: 10.1002/anie.201500626  doi: 10.1002/anie.201500626

    158. [158]

      Han, Y.; Huang, H.; Zhang, H.; Liu, Y.; Han, X.; Liu, R.; Li, H.; Kang, Z. ACS Catal. 2014, 4, 781. doi: 10.1021/cs401118x  doi: 10.1021/cs401118x

    159. [159]

      Li, H.; Liu, R.; Lian, S.; Liu, Y.; Huang, H.; Kang, Z. Nanoscale 2013, 5, 3289. doi: 10.1039/c3nr00092c  doi: 10.1039/c3nr00092c

    160. [160]

      Li, H.; Sun, C.; Ali, M.; Zhou, F.; Zhang, X.; MacFarlane, D. R. Angew. Chem. Int. Ed. 2015, 54, 8420. doi: 10.1002/anie.201501698  doi: 10.1002/anie.201501698

    161. [161]

      Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Adv. Mater. 2016, 28, 4632. doi: 10.1002/adma.201600058  doi: 10.1002/adma.201600058

    162. [162]

      Yang, B. J.; Chen, J. T.; Cui, L. F.; Liu, W. W. RSC Adv. 2015, 5, 59204. doi: 10.1039/c5ra07836a  doi: 10.1039/c5ra07836a

    163. [163]

      Lee, K.; Cho, S.; Kim, M.; Kim, J.; Ryu, J.; Shin, K. -Y.; Jang, J. J. Mater. Chem. A 2015, 3, 19018. doi: 10.1039/C5TA05522A  doi: 10.1039/C5TA05522A

    164. [164]

      Dinari, M.; Momeni, M. M.; Goudarzirad, M. J. Mater. Sci. 2015, 51, 2964. doi: 10.1007/s10853-015-9605-9  doi: 10.1007/s10853-015-9605-9

    165. [165]

      Briscoe, J.; Marinovic, A.; Sevilla, M.; Dunn, S.; Titirici, M. Angew. Chem. Int. Ed. 2015, 54, 4463. doi: 10.1002/anie.201409290  doi: 10.1002/anie.201409290

    166. [166]

      Qu, S.; Zhou, D.; Li, D.; Ji, W.; Jing, P.; Han, D.; Liu, L.; Zeng, H.; Shen, D. Adv. Mater. 2016, 28, 3516. doi: 10.1002/adma.201504891  doi: 10.1002/adma.201504891

    167. [167]

      Kwon, W.; Kim, Y. -H.; Kim, J. -H.; Lee, T.; Do, S.; Park, Y.; Jeong, M. S.; Lee, T. -W.; Rhee, S. -W. Sci. Rep. 2016, 6, 24205. doi: 10.1038/srep24205  doi: 10.1038/srep24205

    168. [168]

      Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. Adv. Mater. 2011, 23, 776. doi: 10.1002/adma.201003819  doi: 10.1002/adma.201003819

    169. [169]

      Li, H.; Shi, W.; Huang, W.; Yao, E. -P.; Han, J.; Chen, Z.; Liu, S.; Shen, Y.; Wang, M.; Yang, Y. Nano Lett. 2017, 17, 2328. doi: 10.1021/acs.nanolett.6b05177  doi: 10.1021/acs.nanolett.6b05177

    170. [170]

      Ryu, J.; Lee, J. W.; Yu, H.; Yun, J.; Lee, K.; Lee, J.; Hwang, D.; Kang, J.; Kim, S. K.; Jang, J. J. Mater. Chem. A 2017, 5, 16834. doi: 10.1039/C7TA02242E  doi: 10.1039/C7TA02242E

    171. [171]

      Duan, J.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem. Int. Ed. 2018, 57, 3787. doi: 10.1002/anie.201800019  doi: 10.1002/anie.201800019

    172. [172]

      Yan, X.; Cui, X.; Li, B.; Li, L. -S. Nano Lett. 2010, 10, 1869. doi: 10.1021/nl101060h  doi: 10.1021/nl101060h

    173. [173]

      Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. J. Mater. Chem. 2012, 12, 1265. doi: 10.1039/c1jm14112k  doi: 10.1039/c1jm14112k

    174. [174]

      Liu, T.; Yu, K.; Chen, H.; Hao, L.; Li, T.; Gao, L.; He, H.; Wang, N.; Guo, Z. J. Mater. Chem. A 2017, 5, 17848. doi: 10.1039/C7TA05123A  doi: 10.1039/C7TA05123A

    175. [175]

      He, Y.; He, J.; Yu, Z.; Zhang, H.; Liu, Y.; Hu, G.; Zheng, M.; Dong, H.; Zhuang, J.; Lei, B. J. Mater. Chem. C 2018, 6, 2495. doi: 10.1039/C8TC00182K  doi: 10.1039/C8TC00182K

    176. [176]

      Chen, Y.; Lian, H.; Wei, Y.; He, X.; Chen, Y.; Wang, B.; Zeng, Q.; Lin, J. Nanoscale 2018, 10, 6734. doi: 10.1039/C8NR00204E  doi: 10.1039/C8NR00204E

    177. [177]

      Zhou, D.; Li, D.; Jing, P.; Zhai, Y.; Shen, D.; Qu, S.; Rogach, A. L. Chem. Mater. 2017, 29, 1779. doi: 10.1021/acs.chemmater.6b05375  doi: 10.1021/acs.chemmater.6b05375

    178. [178]

      Zheng, J.; Wang, Y.; Zhang, F.; Yang, Y.; Liu, X.; Guo, K.; Wang, H.; Xu, B. J. Mater. Chem. C 2017, 5, 8105. doi: 10.1039/C7TC01701D  doi: 10.1039/C7TC01701D

    179. [179]

      Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. Adv. Mater. 2017, 29, 1702910. doi: 10.1002/adma.201702910  doi: 10.1002/adma.201702910

    180. [180]

      Guo, X.; Wang, C. -F.; Yu, Z. -Y.; Chen, L.; Chen, S. Chem. Commun. 2012, 48, 2692. doi: 10.1039/c2cc17769b  doi: 10.1039/c2cc17769b

    181. [181]

      Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; et al. ACS Nano 2012, 6, 5102. doi: 10.1021/nn300760g  doi: 10.1021/nn300760g

    182. [182]

      Kwon, W.; Do, S.; Lee, J.; Hwang, S.; Kim, J. K.; Rhee, S. -W. Chem. Mater. 2013, 25, 1893. doi: 10.1021/cm400517g  doi: 10.1021/cm400517g

    183. [183]

      Zhu, J.; Bai, X.; Zhai, Y.; Chen, X.; Zhu, Y.; Pan, G.; Zhang, H.; Dong, B.; Song, H. J. Mater. Chem. C 2017, 5, 11416. doi: 10.1039/C7TC04155A  doi: 10.1039/C7TC04155A

    184. [184]

      Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Adv. Mater. 2018, 30, 1704740. doi: 10.1002/adma.201704740  doi: 10.1002/adma.201704740

    185. [185]

      Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z. a.; Fan, L.; Yang, S. Adv. Mater. 2017, 29, 1604436 doi: 10.1002/adma.201604436  doi: 10.1002/adma.201604436

    186. [186]

      Zhang, C.; Zhu, F.; Xu, H.; Liu, W.; Yang, L.; Wang, Z.; Ma, J.; Kang, Z.; Liu, Y. Nanoscale 2017, 9, 14592. doi: 10.1039/C7NR04392A  doi: 10.1039/C7NR04392A

    187. [187]

      Hu, Y.; Zhao, Y.; Lu, G.; Chen, N.; Zhang, Z.; Li, H.; Shao, H.; Qu, L. Nanotechnology 2013, 24, 195401. doi: 10.1088/0957-4484/24/19/195401  doi: 10.1088/0957-4484/24/19/195401

    188. [188]

      Liu, W.; Yan, X.; Chen, J.; Feng, Y.; Xue, Q. Nanoscale 2013, 5, 6053. doi: 10.1039/C3NR01139A  doi: 10.1039/C3NR01139A

    189. [189]

      Unnikrishnan, B.; Wu, C. -W.; Chen, I. W. P.; Chang, H. -T.; Lin, C. -H.; Huang, C. -C. ACS Sustain. Chem. Eng. 2016, 4, 3008. doi: 10.1021/acssuschemeng.5b01700  doi: 10.1021/acssuschemeng.5b01700

    190. [190]

      Zhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H. Carbon 2017, 115, 134. doi: 10.1016/j.carbon.2017.01.005  doi: 10.1016/j.carbon.2017.01.005

    191. [191]

      Miltenburg, M. B.; Schon, T. B.; Kynaston, E. L.; Manion, J. G.; Seferos, D. S. Chem. Mater. 2017, 29, 6611. doi: 10.1021/acs.chemmater.7b01700  doi: 10.1021/acs.chemmater.7b01700

    192. [192]

      Jian, X.; Yang, H. -M.; Li, J. -G.; Zhang, E. -H.; Cao, L. -L.; Liang, Z. -H. Electrochim. Acta 2017, 228, 483. doi: 10.1016/j.electacta.2017.01.082  doi: 10.1016/j.electacta.2017.01.082

    193. [193]

      Chen, G.; Wu, S.; Hui, L.; Zhao, Y.; Ye, J.; Tan, Z.; Zeng, W.; Tao, Z.; Yang, L.; Zhu, Y. Sci. Rep. 2016, 6, 19028. doi: 10.1038/srep19028  doi: 10.1038/srep19028

    194. [194]

      Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. Adv. Mater. 2018, 30, 1704449. doi: 10.1002/adma.201704449  doi: 10.1002/adma.201704449

    195. [195]

      Hou, H.; Banks, C. E.; Jing, M.; Zhang, Y.; Ji, X. Adv. Mater. 2015, 27, 7861. doi: 10.1002/adma.201503816  doi: 10.1002/adma.201503816

    196. [196]

      Zhu, C.; Chao, D.; Sun, J.; Bacho, I. M.; Fan, Z.; Ng, C. F.; Xia, X.; Huang, H.; Zhang, H.; Shen, Z. X.; et al. Adv. Mater. Interfaces 2015, 2, 1400499. doi: 10.1002/admi.201400499  doi: 10.1002/admi.201400499

    197. [197]

      Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z. X.; et al. Nano Lett. 2015, 15, 565. doi: 10.1021/nl504038s  doi: 10.1021/nl504038s

    198. [198]

      Chen, Y. M.; Hsu, S. T.; Tseng, Y. H.; Yeh, T. F.; Hou, S. S.; Jan, J. S.; Lee, Y. L.; Teng, H. Small 2018, 14, 1703571. doi: 10.1002/smll.201703571  doi: 10.1002/smll.201703571

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    5. [5]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(23)
  • Abstract views(3554)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return