Citation: XU Xiejun, XIAO Xingqing, XU Shouhong, LIU Honglai. Computational Study of Thermosensitivity of Liposomes Modulated by Leucine Zipper-Structured Lipopeptides[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 598-606. doi: 10.3866/PKU.WHXB201806034 shu

Computational Study of Thermosensitivity of Liposomes Modulated by Leucine Zipper-Structured Lipopeptides

  • Corresponding author: XIAO Xingqing, xxiao3@ncsu.edu LIU Honglai, hlliu@ecust.edu.cn
  • Received Date: 19 June 2018
    Revised Date: 11 July 2018
    Accepted Date: 11 July 2018
    Available Online: 7 June 2018

    Fund Project: the National Natural Science Foundation of China 21776071the National Natural Science Foundation of China for Innovative Research Groups 51621002the 111 Project of China B08021The project was supported by the National Natural Science Foundation of China (21776071), the National Natural Science Foundation of China for Innovative Research Groups (51621002) and the 111 Project of China (B08021)

  • Leucine zipper-functionalized liposomes are promising drug carriers for cancer treatment because of their unique thermosensitivity. The leucine zippers, which consist of two α-helical polypeptides that dimerize in parallel, have characteristic heptad repeats (represented by [abcdefg]n). A leucine residue was observed periodically at site "d" to stabilize the dimerization of the two polypeptides through inter-chain hydrophobic interactions. As the temperature increased, the inter-chain hydrophobic interactions became weaker, eventually triggering the dissociation of the leucine zippers. Due to the unique nature of the temperature response, leucine zippers are useful for developing novel lipid-peptide vesicles for drug delivery because they allow for better control and optimization of drug release under mild hyperthermia. The base sequence of the leucine zipper peptides used in our lab for the functionalize liposomal carrier is [VAQLEVK-VAQLESK-VSKLESK-VSSLESK]. Our recent experiments revealed that modifying this peptide at the N-terminus with distinct functional groups can change the physicochemical properties of the lipopeptides, and eventually affect the liposomes' phase transition behaviors. Four leucine zipper-structured lipopeptides with distinct head groups, viz. ALA, C3CO, C5CO, and POCH, were studied computationally to examine the influence of the molecular structures on the phase transition behaviors of lipopeptides. A series of computational techniques including quantum mechanics (QM) calculations, implicit solvation replica exchange molecular dynamics (REMD) simulations, dihedral principal component analysis (dPCA), and dictionary of protein secondary structure (DSSP) methods, and the conventional explicit solvation molecular dynamics (MD) simulations were applied in this work. First, QM calculations were conducted to obtain the partial charges of some modified head groups. Implicit-solvent REMD simulations were then performed to study the effect of temperature on the folded conformations of the leucine zipper peptides. The dPCA method was used to simulate trajectories to identify representative structures of the peptides at various temperatures, and the DSSP method was used to determine conformation transitions of the four lipopeptides ALA, C3CO, C5CO, and POCH at 324.8, 312.1, 319.1, and 319.4 K, respectively. The thermostability of the lipopeptide dimers in the lipid DPPC bilayer was studied in the conventional explicit solvent MD simulations. Finally, we conducted a deep analysis on the area per lipid and the electron-density profile for the DPPC bilayer to explore the folding and unfolding processes of the lipopeptides in the liposomes to better understand the underlying phase transition mechanisms of the thermosensitive liposomes. On this basis, we could further improve the thermosensitivity of the leucine zipper-structured lipopeptides, thereby facilitating the development of liposomal drug delivery techniques in the future.
  • 加载中
    1. [1]

      Aschenbrenner, D. S. Am. J. Nurs. 2017, 117, 22. doi: 10.1097/01.NAJ.0000521967.00600.3a  doi: 10.1097/01.NAJ.0000521967.00600.3a

    2. [2]

      Liehr, T. Eur. J. Hum. Genet. 2017, 25, 902. doi: 10.1038/ejhg.2017.7  doi: 10.1038/ejhg.2017.7

    3. [3]

      Lokerse, J. M.; Eggermont, M. M.; Grüll, H.; Koning, G. A. J. Controll. Release 2018, 270, 282. doi: 10.1016/j.jconrel.2017.12.012  doi: 10.1016/j.jconrel.2017.12.012

    4. [4]

      Mura, P.; Matascia, N.; Nativi, C.; Richichi, B. Eur. J. Pharm. Biopharm. 2018, 122, 54. doi: 10.1016/j.ejpb.2017.10.008  doi: 10.1016/j.ejpb.2017.10.008

    5. [5]

      Malaescu, I.; Fannin, P. C.; Marin, C. N.; Lazic, D. Med. Hypotheses 2018, 110, 76. doi: 10.1016/j.mehy.2017.11.004  doi: 10.1016/j.mehy.2017.11.004

    6. [6]

      Al-Ahmady, Z. S.; Al-Jamal, W. T.; Bossche, J. V.; Bui, T. T.; Drake, A. F.; Mason, A. J.; Kostarelos, K. ACS Nano 2012, 6, 9335. doi: 10.1021/nn302148p  doi: 10.1021/nn302148p

    7. [7]

      Srinivasan, M.; Lahiri, D. K. Mol. Neurobiol. 2017, 54, 8063. doi: 10.1007/s12035-016-0277-5  doi: 10.1007/s12035-016-0277-5

    8. [8]

      Roodbarkelari, F.; Groot, E. P. New Phytol. 2017, 213, 95. doi: 10.1111/nph.14132  doi: 10.1111/nph.14132

    9. [9]

      Wang, S. J.; Shen, Y. X.; Zhang, J. Q.; Xu, S. H.; Liu, H. L. Phys. Chem. Chem. Phys. 2016, 18, 10129. doi: 10.1039/C6CP00378H  doi: 10.1039/C6CP00378H

    10. [10]

      Wang, S. J.; Han, X.; Liu, D. Y.; Li, M. Y.; Xu, S. H.; Liu, H. L. Langmuir 2017, 33, 1478. doi: 10.1021/acs.langmuir.6b04080  doi: 10.1021/acs.langmuir.6b04080

    11. [11]

      Wang, S. J.; Li, M. Y.; Xu, S. H.; Liu, H. L. Acta Phys. -Chim. Sin. 2017, 33, 829.  doi: 10.3866/PKU.WHXB201701062

    12. [12]

      Xu, X. X.; Xiao, X. Q.; Xu, S. H.; Liu, H. L. Phys. Chem. Chem. Phys. 2016, 18, 25465. doi: 10.1039/C6CP05145F  doi: 10.1039/C6CP05145F

    13. [13]

      Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Kollmann, P. A. J. Am. Chem. Soc. 1993, 115, 9620. doi: 10.1021/ja00074a030  doi: 10.1021/ja00074a030

    14. [14]

      Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179. doi: 10.1021/ja00124a002  doi: 10.1021/ja00124a002

    15. [15]

      Cieplak, P.; Cornell, W. D.; Bayly, C. I.; Kollmann, P. A. J. Comput. Chem. 1995, 16, 1357. doi: 10.1002/jcc.540161106  doi: 10.1002/jcc.540161106

    16. [16]

      Abraham, M. J.; Murtola, T.; Schulz, R.; Pll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1–2, 19. doi: 10.1016/j.softx.2015.06.001  doi: 10.1016/j.softx.2015.06.001

    17. [17]

      Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; et al. Bioinformatics 2013, 29, 845. doi: 10.1093/bioinformatics/btt055  doi: 10.1093/bioinformatics/btt055

    18. [18]

      Maier, J.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.; Simmerling, C. J. Chem. Theory Comput. 2015, 11, 3696. doi: 10.1021/acs.jctc.5b00255  doi: 10.1021/acs.jctc.5b00255

    19. [19]

      Onufriev, A.; Bashford, D.; Case, D. A. Proteins: Struct., Funct., Bioinf. 2004, 55, 383. doi: 10.1002/prot.20033  doi: 10.1002/prot.20033

    20. [20]

      Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. J. Comput. Chem. 2009, 30, 2157. doi: 10.1002/jcc.21224  doi: 10.1002/jcc.21224

    21. [21]

      Martínez, J. M.; Martínez, L. J. Comput. Chem. 2003, 24, 819. doi: 10.1002/jcc.10216  doi: 10.1002/jcc.10216

    22. [22]

      Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T. G.; Bertoni, M.; Bordoli, L.; et al. Nucleic Acids Res. 2014, 42, 252. doi: 10.1093/nar/gku340  doi: 10.1093/nar/gku340

    23. [23]

      Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. Nucleic Acids Res. 2009, 37, 387. doi: 10.1093/nar/gkn750  doi: 10.1093/nar/gkn750

    24. [24]

      Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. Bioinformatics 2006, 22, 195. doi: 10.1093/bioinformatics/bti770  doi: 10.1093/bioinformatics/bti770

    25. [25]

      Dickson, C. J.; Madej, B. D.; Skjevik, A. A.; Betz, R. M.; Teigen, K.; Gould, I. R.; Walker, R. C. J. Chem. Theory Comput. 2014, 10, 865. doi: 10.1021/ct4010307  doi: 10.1021/ct4010307

    26. [26]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869  doi: 10.1063/1.445869

    27. [27]

      Altis, A.; Nguyen, P. H.; Hegger, R.; Stock, G. J. Chem. Phys. 2007, 126, 244111. doi: 10.1063/1.2746330  doi: 10.1063/1.2746330

    28. [28]

      Borgohain, G.; Paul, S. Mol. Simul. 2017, 43, 52. doi: 10.1080/08927022.2016.1233546  doi: 10.1080/08927022.2016.1233546

    29. [29]

      Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577. doi: 10.1002/bip.360221211  doi: 10.1002/bip.360221211

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    19. [19]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(7)
  • Abstract views(346)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return