Citation: HE Chenghuan, GUO Yanglong, GUO Yun, WANG Yunsong, WANG Li, ZHAN Wangcheng. Catalytic Activity of Au Nanoparticles Supported on LaMnO3 Perovskite with Different Composition and Structure[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 422-430. doi: 10.3866/PKU.WHXB201805301 shu

Catalytic Activity of Au Nanoparticles Supported on LaMnO3 Perovskite with Different Composition and Structure

  • Corresponding author: ZHAN Wangcheng, zhanwc@ecust.edu.cn
  • Received Date: 25 April 2018
    Revised Date: 18 May 2018
    Accepted Date: 24 May 2018
    Available Online: 30 April 2018

    Fund Project: the National Natural Science Foundation of China 21571061The project was supported by the National Natural Science Foundation of China (21571061) and the National Key Research and Development Program of China (2016yfc0204300)the National Key Research and Development Program of China 2016yfc0204300

  • Perovskite is widely used as catalyst supports because of its flexible composition, good redox performance, and excellent thermal stability. However, the use of perovskite oxides as catalyst supports has two disadvantages: low surface area due to synthesizing the perovskite structure at high temperatures, and native perovskite surfaces preferentially have A-sites instead of catalytically active sites. On the other hand, interaction between the support and metal affects the size and valence state of noble metals. Therefore, perovskite oxides with different structures were prepared and were used to support Au catalysts, in order to obtain excellent catalytic activity and high stability. Specifically, stoichiometric LaMnO3 and nonstoichiometric LaMn1.2O3 perovskites were prepared by the ethylene glycol sol-gel method, and then the LaMnO3-AE oxide was prepared by treating LaMnO3 perovskite with dilute nitric acid. The perovskite-supported Au catalyst was prepared by the deposition precipitation method and its catalytic activity for CO oxidation was evaluated. Using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (H2-TPR), it was found that LaMnO3 and LaMn1.2O3 perovskite carriers were beneficial for the dispersion of Au; however, the Au nanoparticle size significantly increased with increasing calcination temperature, indicating poor Au thermal stability. In contrast, LaMnO3 perovskite (LaMnO3-AE) etched by nitric acid is not conducive to dispersion of Au, but it is beneficial for improving the thermal stability of Au. Au was always maintained in the zero-valence state after calcination at different temperature. H2-TPR results revealed that the reducibility of the catalysts changed largely after thermal treatment at high temperatures, and was mainly influenced by the agglomeration of Au nanoparticles. Although the reducibility of the Au/LaMnO3-AE catalyst calcined at 250 ℃ is lower than that of Au/LaMn1.2O3 and Au/LaMnO3 catalysts calcined at the same temperature, the former exhibited higher reducibility when the catalyst was calcined at high temperatures (500 and 900 ℃). In the CO oxidation reaction, the catalytic activity of all the prepared catalysts decreased when the calcination temperature was increased from 250 to 500, 700, and 900 ℃. However, the catalytic activity of the Au/LaMn1.2O3 catalyst was significantly higher than those of LaMnO3- and LaMnO3-AE-supported Au catalyst, when calcination temperature was below 500 ℃, while the activity of the Au/LaMnO3-AE catalyst was significantly higher than those of the Au/LaMnO3 and Au/LaMn1.2O3 catalysts when the calcination temperature was more than 700 ℃. As shown in characterization results, after the catalyst was calcined at high temperatures (700 and 900 ℃), the Au nanoparticle size on the Au/LaMnO3-AE catalyst was lower than those on Au/LaMnO3 and Au/LaMn1.2O3 catalysts, leading to high reducibility and catalytic activity of the Au/LaMnO3-AE catalyst. The Au/LaMnO3-AE catalyst also exhibited high stability in CO oxidation. The catalytic activity of the Au/LaMnO3-AE catalyst can be maintained for 20 h at 130 ℃.
  • 加载中
    1. [1]

      Zhan, W. C.; Zhou, G. J.; Chu, G. H.; Shen, K.; Yu, J.; Wang, A. Y.; Su, N.; Lu, G. Z.; Guo, Y. L. Acta Phys. -Chim. Sin. 2011, 27 (3), 705.  doi: 10.3866/PKU.WHXB20110311

    2. [2]

      Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. ACS Catal. 2016, 6 (4), 2265. doi: 10.1021/acscatal.5b02617  doi: 10.1021/acscatal.5b02617

    3. [3]

      Lu, H. F.; Zhang, P. F.; Qiao, Z. A.; Zhang, J. S.; Zhu, H. Y.; Chen, J. H.; Chen, Y. F.; Dai, S. Chem. Commun. 2015, 51 (27), 5910. doi: 10.1039/C5CC00534E  doi: 10.1039/C5CC00534E

    4. [4]

      Zhan, W. C.; Wang, J. L.; Wang, H. F.; Zhang, J. S.; Liu, X. F.; Zhang, P. F.; Chi, M. F.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; et al. J. Am. Chem. Soc. 2017, 139 (26), 8846. doi: 10.1021/jacs.7b01784  doi: 10.1021/jacs.7b01784

    5. [5]

      Zhan, W. C.; He, Q.; Liu, X. F.; Guo, Y. L.; Wang, Y. Q.; Wang, L.; Guo, Y.; Borisevich, A. Y.; Zhang, J. S.; Lu, G. Z.; Dai, S. J. Am. Chem. Soc. 2016, 138 (49), 16130. doi: 10.1021/jacs.6b10472  doi: 10.1021/jacs.6b10472

    6. [6]

      Zhan, W. C.; Shu, Y.; Sheng, Y. J.; Zhu, H. Y.; Guo, Y. L.; Wang, L.; Guo, Y.; Zhang, J. S.; Lu, G. Z.; Dai, S. Angew Chem. Int. Ed. 2017, 56 (16), 4494. doi: 10.1002/anie.201701191  doi: 10.1002/anie.201701191

    7. [7]

      Zhan, W. C.; Yang, S. Z.; Zhang, P. F.; Guo, Y. L.; Liu, G. Z.; Chisholm, M. F.; Dai, S. Chem. Mater. 2017, 29 (17), 7323. doi: 10.1021/acs.chemmater.7b02206  doi: 10.1021/acs.chemmater.7b02206

    8. [8]

      van Spronsen, M. A.; Frenken, J. W. M.; Groot, I. M. N. Chem. Soc. Rev. 2017, 46 (14), 4347. doi: 10.1039/c7cs00045f  doi: 10.1039/c7cs00045f

    9. [9]

      Lin, J.; Wang, X. D.; Zhang, T. Chin. J. Catal. 2016, 37 (11), 1805. doi: 10.1016/S1872-2067(16)62513-5  doi: 10.1016/S1872-2067(16)62513-5

    10. [10]

      Min, B. K. M.; Friend, C. M. Chem. Rev. 2007, 107, 2709. doi: 10.1021/cr050954d  doi: 10.1021/cr050954d

    11. [11]

      Gluhoi, A. C.; Bakker, J. W.; Nieuwenhuys, B. E. Catal Today 2010, 154 (1–2), 13. doi: 10.1016/j.cattod.2010.02.021  doi: 10.1016/j.cattod.2010.02.021

    12. [12]

      Moreau, F.; Bond, G. C.; van der Linden, B. Appl. Catal. A-Gen. 2008, 347 (2), 208. doi: 10.1016/j.apcata.2008.06.019  doi: 10.1016/j.apcata.2008.06.019

    13. [13]

      Penkova, A.; Chakarova, K.; Laguna, O. H.; Hadjiivanov, K.; Saria, F. R. Catal. Commun. 2009, 10 (8), 1196. doi: 10.1016/j.catcom.2009.01.014  doi: 10.1016/j.catcom.2009.01.014

    14. [14]

      Wu, H. C.; Liu, L. C.; Yang, S. M. Appl. Catal. A-Gen. 2001, 211, 159. doi: 10.1016/S0926-860X(00)00869-3  doi: 10.1016/S0926-860X(00)00869-3

    15. [15]

      Tang, H.; Wei, J.; Liu, F.; Qiao, B.; Pan, X.; Li, L.; Liu, J.; Wang, J.; Zhang, T. J. Am. Chem. Soc. 2016, 138 (1), 56. doi: 10.1021/jacs.5b11306  doi: 10.1021/jacs.5b11306

    16. [16]

      Liu, X.; Liu, M.-H.; Luo, Y.-C.; Mou, C.-Y.; Lin, S. D.; Cheng, H.; Chen, J. -M.; Lee, J. -F.; Lin, T. -S. J. Am. Chem. Soc. 2012, 134 (24), 10251. doi: 10.1021/ja3033235  doi: 10.1021/ja3033235

    17. [17]

      Tian, C.; Zhu, X.; Abney, C. W.; Liu, X.; Foo, G. S.; Wu, Z.; Li, M.; Meyer, H. M.; Brown, S.; Mahurin, S. M.; et al. ACS Catal. 2017, 7 (5), 3388. doi: 10.1021/acscatal.7b00483  doi: 10.1021/acscatal.7b00483

    18. [18]

      Wang, Y.; Arandiyan, H.; Scott, J.; Akia, M.; Dai, H.; Deng, J.; Aguey-Zinsou, K. -F.; Amal, R. ACS Catal. 2016, 6 (10), 6935. doi: 10.1021/acscatal.6b01685  doi: 10.1021/acscatal.6b01685

    19. [19]

      Niu, J.; Deng, J.; Liu, W.; Zhang, L.; Wang, G.; Dai, H.; He, H.; Zi, X. Catal Today 2007, 126 (3–4), 420. doi: 10.1016/j.cattod.2007.06.027  doi: 10.1016/j.cattod.2007.06.027

    20. [20]

      Zhu, J.; Li, H.; Zhong, L.; Xiao, P.; Xu, X.; Yang, X.; Zhao, Z.; Li, J. ACS Catal. 2014, 4 (9), 2917. doi: 10.1021/cs500606g  doi: 10.1021/cs500606g

    21. [21]

      Zhang, Y.; Wang, D.; Wang, J.; Chen, Q.; Zhang, Z.; Pan, X.; Miao, Z.; Zhang, B.; Wu, Z.; Yang, X. Chin. J. Catal. 2012, 33 (9–10), 1448. doi: 10.1016/S1872-2067(11)60439-7  doi: 10.1016/S1872-2067(11)60439-7

    22. [22]

      Huang, H.; Sun, Z.; Lu, H.; Shen, L.; Chen, Y. React. Kinet Mech. Cat. 2010, 101 (2), 417. doi: 10.1007/s11144-010-0235-6  doi: 10.1007/s11144-010-0235-6

    23. [23]

      Zhu, J.; Zhao, Y.; Tang, D.; Zhao, Z.; Sonia, A. C. J. Catal. 2016, 340, 41. doi: 10.1016/j.jcat.2016.04.013  doi: 10.1016/j.jcat.2016.04.013

    24. [24]

      Hu, R. S.; Shen, Y. N.; Wang, H. Y.; Sun, Y. A.; Bai, Y. S. Acta Phys. -Chim. Sin. 1993, 9 (3), 382.  doi: 10.3866/PKU.WHXB19930317

    25. [25]

      Weng, D.; Ding, H. M.; Wu, X. D.; Xu, L. H.; Chen, Z. Acta Phys. -Chim. Sin. 2001, 17 (3), 248.  doi: 10.3866/PKU.WHXB20010313

    26. [26]

      Christopher, B.; Rao, A.; Okram, G. S.; Petwal, V. C.; Dwivedi, V. P. V. J. J. Alloy. Compd. 2017, 703, 216. doi: 10.1016/j.jallcom.2017.01.229  doi: 10.1016/j.jallcom.2017.01.229

    27. [27]

      Liu, F. X.; Jia, M. L.; Zhaori, G. T.; Guo, J. L. J. Inner Mongolia Normal Univ. 2012, 41 (1), 81.  doi: 10.3969/j.issn.1001-8735.2012.01.016

    28. [28]

      Jia, M. L.; Li, X.; Zhaori, G. T. Shen, Y. N.; Li, Y. X. J. Rare Earth 2011, 29 (3), 213. doi: 10.1016/S1002-0721(10)60433-4  doi: 10.1016/S1002-0721(10)60433-4

    29. [29]

      Yang, X. G.; Liu, S. T.; Ye, X. K.; Wu, Y.; Sheng, S. S.; Xiong, G. G. Acta Phys. -Chim. Sin. 1995, 11 (8), 681.  doi: 10.3866/PKU.WHXB19950803

    30. [30]

      Fu, Y.; Guo, Y.; Guo, Y.; Wang, Y.; Wang, L.; Zhan, W.; Lu, G. Catal. Sci. Technol. 2017, 7, 4136. doi: 10.1039/c7cy00912g  doi: 10.1039/c7cy00912g

    31. [31]

      Huang, K.; Chu, X.; Yuan, L.; Feng, W.; Wu, X.; Wang, X.; Feng, S. Chem Commun. 2014, 50 (65), 9200. doi: 10.1039/c4cc00023d  doi: 10.1039/c4cc00023d

    32. [32]

      Shen, Y. N.; Hu, R.; S.; Xue, P. J. Inner Mongolia Normal Univ. 1996, 27 (2), 203.
       

    33. [33]

      Meng, D.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, Y.; Wang, L. J. Mol. Catal. A-Chem. 2016, 420, 272. doi: 10.1016/j.molcata.2016.04.028  doi: 10.1016/j.molcata.2016.04.028

    34. [34]

      Meng, D.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G. ACS Catal. 2015, 5, 5973. doi: 10.1021/acscatal.5b00747  doi: 10.1021/acscatal.5b00747

    35. [35]

      Hu, Z.; Qiu, S.; You, Y.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W.; Lu, G. Appl. Catal. B-Environ. 2018, 225, 110. doi: 10.1016/j.apcatb.2017.08.068  doi: 10.1016/j.apcatb.2017.08.068

    36. [36]

      Chang, F. W.; Yu, L. Appl. Catal. A-Gen. 2006, 302, 157. doi: 10.1016/j.apcata.2005.12.028  doi: 10.1016/j.apcata.2005.12.028

    37. [37]

      Qiao, B.; Deng. Y. Appl. Catal. B-Environ. 2006, 66, 241. doi: 10.1016/j.apcatb.2006.04.004  doi: 10.1016/j.apcatb.2006.04.004

    38. [38]

      Jia, M. L.; Hu, R. S.; Shen, Y. N. Inner Mongolia Petrochem. Ind. 2003, 30, 18.  doi: 10.3969/j.issn.1006-7981.2004.01.006

    39. [39]

      Wang, L.; Xie, H.; Wang, X.; Zhang, G.; Guo, Y.; Guo, Y. Chin. J. Catal. 2017, 38, 1406. doi: 10.1016/S1872-2067(17)62863-8  doi: 10.1016/S1872-2067(17)62863-8

    40. [40]

      Ming, C. B.; Ye, D. Q.; Liu, Y. L.; Yang, L. Environ. Sci. 2008, 29 (3), 576.  doi: 10.13227/j.hjkx.2008.03.002

    41. [41]

      Meng, D.; Xu, Q.; Jiao, Y.; Guo, Y.; Gao, Y.; Wang, L.; Lu, G. Appl. Catal. B-Environ. 2018, 221, 652. doi: 10.1016/j.apcatb.2017.09.034  doi: 10.1016/j.apcatb.2017.09.034

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(14)
  • Abstract views(833)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return