Citation: TAN Miao, ZHANG Lei, LIANG Wanzhen. Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 385-393. doi: 10.3866/PKU.WHXB201805291 shu

Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains

  • Corresponding author: LIANG Wanzhen, liangwz@xmu.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 14 May 2018
    Accepted Date: 25 May 2018
    Available Online: 29 April 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21573177)the National Natural Science Foundation of China 21573177

  • Two-dimensional transition metal dichalcogenides (TMDs) possess the potential to be widely applied in optoelectronic devices, sensors, photocatalysis, and many other fields because of their intrinsic physical, chemical, and mechanical properties. Generally, the van der Waals (vdW) heterostructures fabricated from these TMDs exhibit excellent electronic properties. However, the spectral responses of most vdW heterostructures are limited by the inherent band gaps; it is thus essential to tune the band gaps for specific applications. In this paper, we performed a first-principles theoretical study on the structures and properties of WX2 (X = S, Se, Te), as well as the vdW heterostructures WS2/WSe2, WS2/WTe2, and WSe2/WTe2. The impacts of the number of layers on the properties of WX2 and the strain on the band gaps of vdW heterostructures were demonstrated. We found that every monolayer WX2 (X = S, Se, Te) is a direct gap semiconductor, and as the number of layers increases, their band gaps decrease and they become indirect bandgap semiconductors. The spin-orbit coupling (SOC) effect on their band structures is significant and can decrease the band gap by approximately 300 meV compared with those that do no incorporate SOC effects. The properties of WX2 can be accurately described by the HSE06 + SOC approach. WS2/WSe2, WS2/WTe2, and WSe2/WTe2 heterostructures are direct gap semiconductors with band gaps of 1.10, 0.32, and 0.61 eV, respectively. These three heterostructures exhibit type-II band alignments, which facilitate photo-induced electron-hole separation. In addition, they have quite small electron and hole effective masses, indicating that the separated electrons and holes can move very quickly to reduce the recombination rate of electrons and holes. There is an explicit red-shift of the optical absorption spectra of the three heterostructures compared with those of the monolayer components, and the most obvious redshift occurs in WSe2/WTe2. Both uniaxial and biaxial strains can alter the band gaps of these vdW heterostructures. Once the strain exceeds 4%, a transition from semiconductor to metal characteristics occurs. This work provides a way to tune the electronic properties and band gaps of vdW heterostructures for incorporation in high-performance optoelectronic devices.
  • 加载中
    1. [1]

      Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2012, 6, 74. doi: 10.1021/nn2024557  doi: 10.1021/nn2024557

    2. [2]

      Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917. doi: 10.1002/adma.201503270  doi: 10.1002/adma.201503270

    3. [3]

      Arul, N. S.; Han, J. I. Mater. Lett. 2016, 181, 345. doi: 10.1016/j.matlet.2016.06.065  doi: 10.1016/j.matlet.2016.06.065

    4. [4]

      Sun, Z.; Martinez, A.; Wang, F. Nat. Photonics 2016, 10, 227. doi: 10.1038/nphoton.2016.15  doi: 10.1038/nphoton.2016.15

    5. [5]

      Xia, F.; Wang, H.; Xiao, D.; Dubey, M. Nat. Photonics 2014, 8, 899. doi: 10.1038/nphoton.2014.271  doi: 10.1038/nphoton.2014.271

    6. [6]

      Gupta, A.; Sakthivel, T.; Seal, S. Prog. Mater. Sci. 2015, 73, 44. doi: 10.1016/j.pmatsci.2015.02.002  doi: 10.1016/j.pmatsci.2015.02.002

    7. [7]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat Nanotechnol. 2012, 7, 699. doi: 10.1038/nnano.2012.193  doi: 10.1038/nnano.2012.193

    8. [8]

      Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V.; et al. ACS Nano 2015, 9, 11509. doi: 10.1021/acsnano.5b05556  doi: 10.1021/acsnano.5b05556

    9. [9]

      Huo, N.; Kang, J.; Wei, Z.; Li, S. S.; Li, J.; Wei, S. H. Adv. Funct. Mater. 2014, 24, 7025. doi: 10.1002/adfm.201401504  doi: 10.1002/adfm.201401504

    10. [10]

      Choudhary, N.; Park, J.; Hwang, J. Y.; Chung, H. S.; Dumas, K. H.; Khondaker, S. I.; Choi, W.; Jung, Y. Sci. Rep. 2016, 6, 25456. doi: 10.1038/srep25456  doi: 10.1038/srep25456

    11. [11]

      Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2013, 8, 952. doi: 10.1038/nnano.2013.219  doi: 10.1038/nnano.2013.219

    12. [12]

      Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. ACS Nano 2014, 8, 12717. doi: 10.1021/nn505736z  doi: 10.1021/nn505736z

    13. [13]

      Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater. 2014, 13, 1096. doi: 10.1038/nmat4064  doi: 10.1038/nmat4064

    14. [14]

      Zhang, K.; Zhang, T.; Cheng, G.; Li, T.; Wang, S.; Wei, W.; Zhou, X.; Yu, W.; Sun, Y.; Wang, P.; et al. ACS Nano 2016, 10, 3852. doi: 10.1021/acsnano.6b00980  doi: 10.1021/acsnano.6b00980

    15. [15]

      Zhang, W.; Wang, Q.; Chen, Y.; Wang, Z.; Andrew, T. S. W. 2D Mater. 2016, 3, 022001. doi: 10.1088/2053-1583/3/2/022001  doi: 10.1088/2053-1583/3/2/022001

    16. [16]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    17. [17]

      Chen, Y.; Wang, X.; Wu, G.; Wang, Z.; Fang, H.; Lin, T.; Sun, S.; Shen, H.; Hu, W.; Wang, J.; et al. Small 2018, 14, 1703293. doi: 10.1002/smll.201703293  doi: 10.1002/smll.201703293

    18. [18]

      Mak, K. F.; Shan, J. Nat. Photonics 2016, 10, 216. doi: 10.1038/nphoton.2015.282  doi: 10.1038/nphoton.2015.282

    19. [19]

      Chen, Y.; Xi, J.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang, Y. S.; Xie, L. ACS Nano 2013, 7, 4610. doi: 10.1021/nn401420h  doi: 10.1021/nn401420h

    20. [20]

      Johari, P.; Shenoy, V. B. ACS Nano 2012, 6, 5449. doi: 10.1021/nn301320r  doi: 10.1021/nn301320r

    21. [21]

      Kang, J.; Li, J.; Li, S. S.; Xia, J. B.; Wang, L. W. Nano Lett. 2013, 13, 5485. doi: 10.1021/nl4030648  doi: 10.1021/nl4030648

    22. [22]

      Rathi, S.; Lee, I.; Lim, D.; Wang, J.; Ochiai, Y.; Aoki, N.; Watanabe, K.; Taniguchi, T.; Lee, G. H.; Yu, Y. J.; et al. Nano Lett. 2015, 15, 5017. doi: 10.1021/acs.nanolett.5b01030  doi: 10.1021/acs.nanolett.5b01030

    23. [23]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/nmat4091  doi: 10.1038/nmat4091

    24. [24]

      Zeng, Q.; Wang, H.; Fu, W.; Gong, Y.; Zhou, W.; Ajayan, P. M.; Lou, J.; Liu, Z. Small 2014, 11, 1868. doi: 10.1002/smll.201402380  doi: 10.1002/smll.201402380

    25. [25]

      Kou, L.; Frauenheim, T.; Chen, C. J. Phys. Chem. Lett. 2013, 4, 1730. doi: 10.1021/jz400668d  doi: 10.1021/jz400668d

    26. [26]

      Zhang, C.; Chuu, C. P.; Ren, X.; Li, M. Y.; Li, L. J.; Jin, C.; Chou, M. Y.; Shih, C. K. Sci. Adv. 2017, 3, 1. doi: 10.1126/sciadv.1601459  doi: 10.1126/sciadv.1601459

    27. [27]

      Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W. N.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 2879. doi: 10.1039/C3NR06072A  doi: 10.1039/C3NR06072A

    28. [28]

      Zhang, C.; Li, M. Y.; Tersoff, J.; Han, Y.; Su, Y.; Li, L. J.; Muller, D. A.; Shih, C. K. Nat. Nano 2018, 13, 152. doi: 10.1038/s41565-017-0022-x  doi: 10.1038/s41565-017-0022-x

    29. [29]

      Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. Solid State Commun. 2000, 114, 245. doi: 10.1016/S0038-1098(00)00047-8  doi: 10.1016/S0038-1098(00)00047-8

    30. [30]

      Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S. L.; Aaron, D.; Hayashi, T; Kim, Y. A.; Endo, M.; et al. ACS Nano 2013, 7, 5235. doi: 10.1021/nn400971k  doi: 10.1021/nn400971k

    31. [31]

      Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. IEEE Trans. Elec. Dev. 2011, 58, 3042. doi: 10.1109/TED.2011.2159221  doi: 10.1109/TED.2011.2159221

    32. [32]

      Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Phys. Rev. B 2011, 84, 15. doi: 10.1103/PhysRevB.84.153402  doi: 10.1103/PhysRevB.84.153402

    33. [33]

      Xiao, D.; Liu, G. B.; Feng, W.; Xu, X.; Yao, W. Phys. Rev. Lett. 2012, 108, 196802. doi: 10.1103/PhysRevLett.108.196802  doi: 10.1103/PhysRevLett.108.196802

    34. [34]

      Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Nano Lett. 2017, 17, 644. doi: 10.1021/acs.nanolett.6b03513  doi: 10.1021/acs.nanolett.6b03513

    35. [35]

      Horri, A.; Faez, R.; Pourfath, M.; Darvish, G. J. Appl. Phys. 2017, 121, 214503. doi: 10.1063/1.4984145  doi: 10.1063/1.4984145

    36. [36]

      Jeong, H. Y.; Jin, Y.; Yun, S. J.; Zhao, J.; Baik, J.; Keum, D. H.; Lee, H. S.; Lee, Y. H. Adv. Mater. 2017, 29, 1. doi: 10.1063/1.49841451  doi: 10.1063/1.49841451

    37. [37]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    38. [38]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    39. [39]

      Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Nano Lett. 2016, 16, 497. doi: 10.1021/acs.nanolett.5b04141  doi: 10.1021/acs.nanolett.5b04141

    40. [40]

      Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. Phys. B: Condens. Matter 2011, 406, 2254. doi: 10.1016/j.physb.2011.03.044  doi: 10.1016/j.physb.2011.03.044

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    9. [9]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    10. [10]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(37)
  • Abstract views(1801)
  • HTML views(479)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return