Citation: TAN Miao, ZHANG Lei, LIANG Wanzhen. Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 385-393. doi: 10.3866/PKU.WHXB201805291 shu

Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains

  • Corresponding author: LIANG Wanzhen, liangwz@xmu.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 14 May 2018
    Accepted Date: 25 May 2018
    Available Online: 29 April 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21573177)the National Natural Science Foundation of China 21573177

  • Two-dimensional transition metal dichalcogenides (TMDs) possess the potential to be widely applied in optoelectronic devices, sensors, photocatalysis, and many other fields because of their intrinsic physical, chemical, and mechanical properties. Generally, the van der Waals (vdW) heterostructures fabricated from these TMDs exhibit excellent electronic properties. However, the spectral responses of most vdW heterostructures are limited by the inherent band gaps; it is thus essential to tune the band gaps for specific applications. In this paper, we performed a first-principles theoretical study on the structures and properties of WX2 (X = S, Se, Te), as well as the vdW heterostructures WS2/WSe2, WS2/WTe2, and WSe2/WTe2. The impacts of the number of layers on the properties of WX2 and the strain on the band gaps of vdW heterostructures were demonstrated. We found that every monolayer WX2 (X = S, Se, Te) is a direct gap semiconductor, and as the number of layers increases, their band gaps decrease and they become indirect bandgap semiconductors. The spin-orbit coupling (SOC) effect on their band structures is significant and can decrease the band gap by approximately 300 meV compared with those that do no incorporate SOC effects. The properties of WX2 can be accurately described by the HSE06 + SOC approach. WS2/WSe2, WS2/WTe2, and WSe2/WTe2 heterostructures are direct gap semiconductors with band gaps of 1.10, 0.32, and 0.61 eV, respectively. These three heterostructures exhibit type-II band alignments, which facilitate photo-induced electron-hole separation. In addition, they have quite small electron and hole effective masses, indicating that the separated electrons and holes can move very quickly to reduce the recombination rate of electrons and holes. There is an explicit red-shift of the optical absorption spectra of the three heterostructures compared with those of the monolayer components, and the most obvious redshift occurs in WSe2/WTe2. Both uniaxial and biaxial strains can alter the band gaps of these vdW heterostructures. Once the strain exceeds 4%, a transition from semiconductor to metal characteristics occurs. This work provides a way to tune the electronic properties and band gaps of vdW heterostructures for incorporation in high-performance optoelectronic devices.
  • 加载中
    1. [1]

      Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2012, 6, 74. doi: 10.1021/nn2024557  doi: 10.1021/nn2024557

    2. [2]

      Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917. doi: 10.1002/adma.201503270  doi: 10.1002/adma.201503270

    3. [3]

      Arul, N. S.; Han, J. I. Mater. Lett. 2016, 181, 345. doi: 10.1016/j.matlet.2016.06.065  doi: 10.1016/j.matlet.2016.06.065

    4. [4]

      Sun, Z.; Martinez, A.; Wang, F. Nat. Photonics 2016, 10, 227. doi: 10.1038/nphoton.2016.15  doi: 10.1038/nphoton.2016.15

    5. [5]

      Xia, F.; Wang, H.; Xiao, D.; Dubey, M. Nat. Photonics 2014, 8, 899. doi: 10.1038/nphoton.2014.271  doi: 10.1038/nphoton.2014.271

    6. [6]

      Gupta, A.; Sakthivel, T.; Seal, S. Prog. Mater. Sci. 2015, 73, 44. doi: 10.1016/j.pmatsci.2015.02.002  doi: 10.1016/j.pmatsci.2015.02.002

    7. [7]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat Nanotechnol. 2012, 7, 699. doi: 10.1038/nnano.2012.193  doi: 10.1038/nnano.2012.193

    8. [8]

      Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V.; et al. ACS Nano 2015, 9, 11509. doi: 10.1021/acsnano.5b05556  doi: 10.1021/acsnano.5b05556

    9. [9]

      Huo, N.; Kang, J.; Wei, Z.; Li, S. S.; Li, J.; Wei, S. H. Adv. Funct. Mater. 2014, 24, 7025. doi: 10.1002/adfm.201401504  doi: 10.1002/adfm.201401504

    10. [10]

      Choudhary, N.; Park, J.; Hwang, J. Y.; Chung, H. S.; Dumas, K. H.; Khondaker, S. I.; Choi, W.; Jung, Y. Sci. Rep. 2016, 6, 25456. doi: 10.1038/srep25456  doi: 10.1038/srep25456

    11. [11]

      Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2013, 8, 952. doi: 10.1038/nnano.2013.219  doi: 10.1038/nnano.2013.219

    12. [12]

      Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. ACS Nano 2014, 8, 12717. doi: 10.1021/nn505736z  doi: 10.1021/nn505736z

    13. [13]

      Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater. 2014, 13, 1096. doi: 10.1038/nmat4064  doi: 10.1038/nmat4064

    14. [14]

      Zhang, K.; Zhang, T.; Cheng, G.; Li, T.; Wang, S.; Wei, W.; Zhou, X.; Yu, W.; Sun, Y.; Wang, P.; et al. ACS Nano 2016, 10, 3852. doi: 10.1021/acsnano.6b00980  doi: 10.1021/acsnano.6b00980

    15. [15]

      Zhang, W.; Wang, Q.; Chen, Y.; Wang, Z.; Andrew, T. S. W. 2D Mater. 2016, 3, 022001. doi: 10.1088/2053-1583/3/2/022001  doi: 10.1088/2053-1583/3/2/022001

    16. [16]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    17. [17]

      Chen, Y.; Wang, X.; Wu, G.; Wang, Z.; Fang, H.; Lin, T.; Sun, S.; Shen, H.; Hu, W.; Wang, J.; et al. Small 2018, 14, 1703293. doi: 10.1002/smll.201703293  doi: 10.1002/smll.201703293

    18. [18]

      Mak, K. F.; Shan, J. Nat. Photonics 2016, 10, 216. doi: 10.1038/nphoton.2015.282  doi: 10.1038/nphoton.2015.282

    19. [19]

      Chen, Y.; Xi, J.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang, Y. S.; Xie, L. ACS Nano 2013, 7, 4610. doi: 10.1021/nn401420h  doi: 10.1021/nn401420h

    20. [20]

      Johari, P.; Shenoy, V. B. ACS Nano 2012, 6, 5449. doi: 10.1021/nn301320r  doi: 10.1021/nn301320r

    21. [21]

      Kang, J.; Li, J.; Li, S. S.; Xia, J. B.; Wang, L. W. Nano Lett. 2013, 13, 5485. doi: 10.1021/nl4030648  doi: 10.1021/nl4030648

    22. [22]

      Rathi, S.; Lee, I.; Lim, D.; Wang, J.; Ochiai, Y.; Aoki, N.; Watanabe, K.; Taniguchi, T.; Lee, G. H.; Yu, Y. J.; et al. Nano Lett. 2015, 15, 5017. doi: 10.1021/acs.nanolett.5b01030  doi: 10.1021/acs.nanolett.5b01030

    23. [23]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/nmat4091  doi: 10.1038/nmat4091

    24. [24]

      Zeng, Q.; Wang, H.; Fu, W.; Gong, Y.; Zhou, W.; Ajayan, P. M.; Lou, J.; Liu, Z. Small 2014, 11, 1868. doi: 10.1002/smll.201402380  doi: 10.1002/smll.201402380

    25. [25]

      Kou, L.; Frauenheim, T.; Chen, C. J. Phys. Chem. Lett. 2013, 4, 1730. doi: 10.1021/jz400668d  doi: 10.1021/jz400668d

    26. [26]

      Zhang, C.; Chuu, C. P.; Ren, X.; Li, M. Y.; Li, L. J.; Jin, C.; Chou, M. Y.; Shih, C. K. Sci. Adv. 2017, 3, 1. doi: 10.1126/sciadv.1601459  doi: 10.1126/sciadv.1601459

    27. [27]

      Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W. N.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 2879. doi: 10.1039/C3NR06072A  doi: 10.1039/C3NR06072A

    28. [28]

      Zhang, C.; Li, M. Y.; Tersoff, J.; Han, Y.; Su, Y.; Li, L. J.; Muller, D. A.; Shih, C. K. Nat. Nano 2018, 13, 152. doi: 10.1038/s41565-017-0022-x  doi: 10.1038/s41565-017-0022-x

    29. [29]

      Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. Solid State Commun. 2000, 114, 245. doi: 10.1016/S0038-1098(00)00047-8  doi: 10.1016/S0038-1098(00)00047-8

    30. [30]

      Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S. L.; Aaron, D.; Hayashi, T; Kim, Y. A.; Endo, M.; et al. ACS Nano 2013, 7, 5235. doi: 10.1021/nn400971k  doi: 10.1021/nn400971k

    31. [31]

      Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. IEEE Trans. Elec. Dev. 2011, 58, 3042. doi: 10.1109/TED.2011.2159221  doi: 10.1109/TED.2011.2159221

    32. [32]

      Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Phys. Rev. B 2011, 84, 15. doi: 10.1103/PhysRevB.84.153402  doi: 10.1103/PhysRevB.84.153402

    33. [33]

      Xiao, D.; Liu, G. B.; Feng, W.; Xu, X.; Yao, W. Phys. Rev. Lett. 2012, 108, 196802. doi: 10.1103/PhysRevLett.108.196802  doi: 10.1103/PhysRevLett.108.196802

    34. [34]

      Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Nano Lett. 2017, 17, 644. doi: 10.1021/acs.nanolett.6b03513  doi: 10.1021/acs.nanolett.6b03513

    35. [35]

      Horri, A.; Faez, R.; Pourfath, M.; Darvish, G. J. Appl. Phys. 2017, 121, 214503. doi: 10.1063/1.4984145  doi: 10.1063/1.4984145

    36. [36]

      Jeong, H. Y.; Jin, Y.; Yun, S. J.; Zhao, J.; Baik, J.; Keum, D. H.; Lee, H. S.; Lee, Y. H. Adv. Mater. 2017, 29, 1. doi: 10.1063/1.49841451  doi: 10.1063/1.49841451

    37. [37]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    38. [38]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    39. [39]

      Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Nano Lett. 2016, 16, 497. doi: 10.1021/acs.nanolett.5b04141  doi: 10.1021/acs.nanolett.5b04141

    40. [40]

      Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. Phys. B: Condens. Matter 2011, 406, 2254. doi: 10.1016/j.physb.2011.03.044  doi: 10.1016/j.physb.2011.03.044

  • 加载中
    1. [1]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    4. [4]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(37)
  • Abstract views(1652)
  • HTML views(441)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return