Citation: CAO Dandan, LÜ Rong, YU Anchi. Preparation and Characterization of Carbon Nitride Film with High Optical Quality[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 442-450. doi: 10.3866/PKU.WHXB201805163 shu

Preparation and Characterization of Carbon Nitride Film with High Optical Quality

  • Corresponding author: YU Anchi, yuac@ruc.edu.cn
  • Received Date: 3 April 2018
    Revised Date: 14 May 2018
    Accepted Date: 14 May 2018
    Available Online: 16 April 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773306)the National Natural Science Foundation of China 21773306

  • Graphitic carbon nitride (g-CN), as a nonmetal semiconductor material, has been widely used in various fields, such as photocatalysis, electrocatalysis, batteries, light-emitting diodes, and solar cells, owing to its unique electronic and photophysical properties. However, the application of g-CN in practical devices remains limited because of the difficulties in fabricating g-CN films of high quality. In this work, we report a method for preparing a g-CN film with high optical quality on a substrate of indium tin oxide (ITO) glass and/or soda lime (NaCa) glass by using melamine as a precursor. First, we prepared the bulk g-CN from melamine in a muffle furnace via thermal polymerization. Then, we fabricated the g-CN film on the ITO and/or NaCa glass substrate with fine-milled, bulk g-CN in a tube furnace using thermal vapor deposition. With this two-step method, a yellow, transparent g-CN film with high optical quality was successfully fabricated on both the ITO and/or NaCa glass substrates. To check the quality of the film, we used scanning electron microscopy (SEM) to study the morphology of the fabricated g-CN film on the ITO glass substrate. Both the high-resolution and low-resolution SEM image results show that the obtained g-CN film on the ITO glass substrate had a homogeneous and dense structure without a corrugated surface, illustrating that it had good surface roughness. Then, we investigated the thickness and surface roughness of the g-CN film via atomic force microscopy (AFM). The AFM results show that the thickness of the g-CN film deposited on the ITO glass substrate was around 300 nm and that the surface roughness of the g-CN film deposited on the ITO glass substrate was less than 40 nm. To verify the chemical composition of the obtained g-CN film on the ITO glass substrate, we performed X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS) analyses. Both the XPS and EDS results demonstrate that the chemical composition of the g-CN film deposited on the ITO glass substrate was similar to that of bulk g-CN powder. More importantly, we determined the band structure for the g-CN film deposited on the ITO glass substrate by using a combination of steady-state absorption and high-resolution valence band XPS analysis. It was found that the determined band structure for the g-CN film deposited on the ITO glass substrate was close to that of bulk g-CN powder, also indicating that its chemical composition was similar to that of bulk g-CN. Meanwhile, we also found that the prepared g-CN film on the ITO glass substrate effectively degraded methylene blue dye under Xe lamp irradiation, which was similar to the effect of bulk g-CN powder. All analyses performed demonstrate that the two-step method presented in this study could successfully fabricate a g-CN film with high optical quality. In addition, we also analyzed the fluorescence lifetime of the g-CN film deposited on the ITO glass substrate by using a homemade time-correlated single-photon counting apparatus and found that it was much shorter than that of bulk g-CN.
  • 加载中
    1. [1]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    2. [2]

      Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S.; Jin, W. Catal. Sci. Technol. 2016, 6 (19), 7002. doi: 10.1039/c6cy01195k  doi: 10.1039/c6cy01195k

    3. [3]

      Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030  doi: 10.1016/j.apsusc.2016.07.030

    4. [4]

      Miller, T. S.; Jorge, A. B.; Suter, T. M.; Sella, A.; Cora, F.; McMillan, P. F. Phys. Chem. Chem. Phys. 2017, 19 (24), 15613. doi: 10.1039/c7cp02711g  doi: 10.1039/c7cp02711g

    5. [5]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116 (12), 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    6. [6]

      Cao, S.; Yu, J. J. Phys. Chem. Lett. 2014, 5 (12), 2101. doi: 10.1021/jz500546b  doi: 10.1021/jz500546b

    7. [7]

      Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240. doi: 10.1002/anie.201403375  doi: 10.1002/anie.201403375

    8. [8]

      Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. ACS Nano 2016, 10 (2), 2745. doi: 10.1021/acsnano.5b07831  doi: 10.1021/acsnano.5b07831

    9. [9]

      Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Adv. Mater. 2017, 29 (22), 1700008. doi: 10.1002/adma.201700008  doi: 10.1002/adma.201700008

    10. [10]

      Lin, Z.; Wang, X. Angew. Chem. Int. Ed. 2013, 52 (6), 1735. doi: 10.1002/anie.201209017  doi: 10.1002/anie.201209017

    11. [11]

      Jiang, W.; Luo, W.; Wang, J.; Zhang, M.; Zhu, Y. J. Photochem. Photobiol. C 2016, 28, 87. doi: 10.1016/j.jphotochemrev.2016.06.001  doi: 10.1016/j.jphotochemrev.2016.06.001

    12. [12]

      Wang, X.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2 (8), 1596. doi: 10.1021/cs300240x  doi: 10.1021/cs300240x

    13. [13]

      Zhang, Y.; Thomas, A.; Antonietti, M.; Wang, X. J. Am. Chem. Soc. 2009, 131 (1), 50. doi: 10.1021/ja808329f  doi: 10.1021/ja808329f

    14. [14]

      Shi, Y.; Jiang, S.; Zhou, K.; Bao, C.; Yu, B.; Qian, X.; Wang, B.; Hong, N.; Wen, P.; Gui, Z.; Hu, Y.; Yuen, R. K. ACS Appl. Mater. Interfaces 2014, 6 (1), 429. doi: 10.1021/am4044932  doi: 10.1021/am4044932

    15. [15]

      Jiang, L. L.; Wang, Z. K.; Li, M.; Zhang, C. C.; Ye, Q. Q.; Hu, K. H.; Lu, D. Z.; Fang, P. F.; Liao, L. S. Adv. Funct. Mater. 2018, 28 (7), 1705875. doi: 10.1002/adfm.201705875  doi: 10.1002/adfm.201705875

    16. [16]

      Afshari, M.; Dinari, M.; Momeni, M. M. Ultrason. Sonochem. 2018, 42, 631. doi: 10.1016/j.ultsonch.2017.12.023  doi: 10.1016/j.ultsonch.2017.12.023

    17. [17]

      Liu, D. G.; Bai, W. Q.; Pan, Y. J.; Tu, J. P. Diamond Relat. Mater. 2015, 55, 102. doi: 10.1016/j.diamond.2015.03.015  doi: 10.1016/j.diamond.2015.03.015

    18. [18]

      Liu, D. G.; Tu, J. P.; Hong, C. F.; Gu, C. D.; Mao, S. X. Surf. Coat. Int. 2010, 205 (1), 152. doi: 10.1016/j.surfcoat.2010.06.022  doi: 10.1016/j.surfcoat.2010.06.022

    19. [19]

      Dong, Z. B.; Lu, Y. F.; Gao, K.; Shi, L. Q.; Sun, J.; Xu, N.; Wu, J. D. Thin Solid Films 2008, 516 (23), 8594. doi: 10.1016/j.tsf.2008.06.013  doi: 10.1016/j.tsf.2008.06.013

    20. [20]

      Ge, L.; Han, C. Appl. Catal. B: Environ. 2012, 117-118, 268. doi: 10.1016/j.apcatb.2012.01.021  doi: 10.1016/j.apcatb.2012.01.021

    21. [21]

      Yang, Y. X.; Guo, Y. N.; Liu, F. Y.; Yuan, X.; Guo, Y. H.; Zhang, S. Q.; Guo, W.; Huo, M. X. Appl. Catal. B: Environ. 2013, 142, 828. doi: 10.1016/j.apcatb.2013.06.026  doi: 10.1016/j.apcatb.2013.06.026

    22. [22]

      Ye, L.; Chen, S. Appl. Surf. Sci. 2016, 389, 1076. doi: 10.1016/j.apsusc.2016.08.038  doi: 10.1016/j.apsusc.2016.08.038

    23. [23]

      Bu, Y.; Chen, Z.; Yu, J.; Li, W. Electrochim. Acta 2013, 88, 294. doi: 10.1016/j.electacta.2012.10.049  doi: 10.1016/j.electacta.2012.10.049

    24. [24]

      Shalom, M.; Gimenez, S.; Schipper, F.; Herraiz-Cardona, I.; Bisquert, J.; Antonietti, M. Angew. Chem. Int. Ed. 2014, 53 (14), 3654. doi: 10.1002/anie.201309415  doi: 10.1002/anie.201309415

    25. [25]

      Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18 (41), 4893. doi: 10.1039/b800274f  doi: 10.1039/b800274f

    26. [26]

      Zhang, H.; Li, S.; Lu, R.; Yu, A. ACS Appl. Mater. Interfaces 2015, 7 (39), 21868. doi: 10.1021/acsami.5b06309  doi: 10.1021/acsami.5b06309

    27. [27]

      Bian, J.; Li, Q.; Huang, C.; Li, J.; Guo, Y.; Zaw, M.; Zhang, R. Q. Nano Energy 2015, 15, 353. doi: 10.1016/j.nanoen.2015.04.012  doi: 10.1016/j.nanoen.2015.04.012

    28. [28]

      Ye, L.; Wang, D.; Chen, S. ACS Appl. Mater. Interfaces 2016, 8 (8), 5280. doi: 10.1021/acsami.5b11326  doi: 10.1021/acsami.5b11326

    29. [29]

      Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F.; Pan, Z.; Sun, Z.; Wei, S. J. Am. Chem. Soc. 2017, 139 (8), 3021. doi: 10.1021/jacs.6b11878  doi: 10.1021/jacs.6b11878

    30. [30]

      Wu, X. C.; Hong, J. M.; Han, Z. J.; Tao, Y. R. Chem. Phys. Lett. 2003, 373 (1-2), 28. doi: 10.1016/s0009-2614(03)00582-7  doi: 10.1016/s0009-2614(03)00582-7

    31. [31]

      Lau, V. W.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. J. Am. Chem. Soc. 2015, 137 (3), 1064. doi: 10.1021/ja511802c  doi: 10.1021/ja511802c

    32. [32]

      Praus, P.; Svoboda, L.; Ritz, M.; Troppová, I.; Šihor, M.; Kočí, K. Mater. Chem. Phys. 2017, 193, 438. doi: 10.1016/j.matchemphys.2017.03.008  doi: 10.1016/j.matchemphys.2017.03.008

    33. [33]

      Zhang, J.; Zhang, M.; Zhang, G.; Wang, X. ACS Catal. 2012, 2 (6), 940. doi: 10.1021/cs300167b  doi: 10.1021/cs300167b

    34. [34]

      Lin, L.; Ou, H.; Zhang, Y.; Wang, X. ACS Catal. 2016, 6 (6), 3921. doi: 10.1021/acscatal.6b00922  doi: 10.1021/acscatal.6b00922

    35. [35]

      Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Antonietti, M.; Wang, X. J. Mater. Chem. 2011, 21 (34), 13032. doi: 10.1039/c1jm11961c  doi: 10.1039/c1jm11961c

    36. [36]

      Jorge, A. B.; Martin, D. J.; Dhanoa, M. T. S.; Rahman, A. S.; Makwana, N.; Tang, J.; Sella, A.; Corà, F.; Firth, S.; Darr, J. A.; McMillan, P. F. J. Phys. Chem. C 2013, 117 (14), 7178. doi: 10.1021/jp4009338  doi: 10.1021/jp4009338

    37. [37]

      Deifallah, M.; McMillan, P. F.; Corà, F. J. Phys. Chem. C 2008, 112 (14), 5447. doi: 10.1021/jp711483t  doi: 10.1021/jp711483t

    38. [38]

      Wang, Y.; Zhao, J.; Li, Y.; Wang, C. Appl. Catal. B 2018, 226, 544. doi: 10.1016/j.apcatb.2018.01.005  doi: 10.1016/j.apcatb.2018.01.005

    39. [39]

      Yang, F.; Kuznietsov, V.; Lublow, M.; Merschjann, C.; Steigert, A.; Klaer, J.; Thomas, A.; Schedel-Niedrig, T. J. Mater. Chem. A 2013, 1, 6407. doi: 10.1039/c3ta10360a  doi: 10.1039/c3ta10360a

    40. [40]

      Peng, G.; Xing, L.; Barrio, J.; Volokh, M.; Shalom, M. Angew. Chem. Int. Ed. 2018, 57 (5), 1186. doi: 10.1002/anie.201711669  doi: 10.1002/anie.201711669

    41. [41]

      Ye, C.; Li, J. X.; Li, Z. J.; Li, X. B.; Fan, X. B.; Zhang, L. P.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2015, 5 (11), 6973. doi: 10.1021/acscatal.5b02185  doi: 10.1021/acscatal.5b02185

    42. [42]

      Zhang, Y.; Pan, Q.; Chai, G.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Sci. Rep. 2013, 3, 1943. doi: 10.1038/srep01943  doi: 10.1038/srep01943

    43. [43]

      Elbanna, O.; Fujitsuka, M.; Majima, T. ACS Appl. Mater. Interfaces 2017, 9 (40), 34844. doi: 10.1021/acsami.7b08548  doi: 10.1021/acsami.7b08548

    44. [44]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22 (22), 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    45. [45]

      Niu, P.; Liu, G.; Cheng, H. M. J. Phys. Chem. C 2012, 116 (20), 11013. doi: 10.1021/jp301026y  doi: 10.1021/jp301026y

    46. [46]

      Zhang, H.; Yu, A. J. Phys. Chem. C 2014, 118 (22), 11628. doi: 10.1021/jp503477x  doi: 10.1021/jp503477x

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(13)
  • Abstract views(452)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return