Citation: ZHANG Shushan, ZHOU Jianzhang, WU Deyin, TIAN Zhongqun. Application of Ag Nanoparticle-Modified Fiber Probe for Plasmonic[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 307-316. doi: 10.3866/PKU.WHXB201805162 shu

Application of Ag Nanoparticle-Modified Fiber Probe for Plasmonic

  • Corresponding author: ZHOU Jianzhang, jzzhou@xmu.edu.cn
  • Received Date: 18 April 2018
    Revised Date: 10 May 2018
    Accepted Date: 11 May 2018
    Available Online: 16 March 2018

    Fund Project: the National Natural Science Foundation of China 21021002the National Natural Science Foundation of China 91023043the National Natural Science Foundation of China 91023006The project was supported by the National Natural Science Foundation of China (91023043, 21021002, 91023006)

  • In this study, a localized surface plasmon resonance (LSPR) fiber probe modified with Ag nanoparticles (NPs) was developed. The LSPR fiber probe not only serves as a reaction substrate for plasmonic catalysis, but also detects in situ surface-enhanced Raman spectroscopy (SERS) signals from the reaction product, thereby achieving the integration of the plasmonic catalysis reactions and SERS signal detection. To fabricate the LSPR probe, plasmonic Ag NPs were first self-assembled on the surface of the fiber probe with assistance by the amination and silanization of (3-aminopropyl) trimethoxysilane (APTMS) molecules. p-Aminothiophenol (PATP) was chosen as a model molecule for plasmonic catalytic reaction. By regulating the self-assembly time of the Ag NPs, a uniform distributed monolayer of Ag NPs was formed on the surface of the probe, with which excellent plasmonic catalysis effects and SERS signal collection from the reaction product of 4, 4′-dimercaptoazobenzene (DMAB) were achieved. It was found that the characteristic SERS signal of the plasmonic catalytic reaction product DMAB obtained from internal excitation and collection was 12.8 times more intense than that from the external excitation and collection under the same laser intensity conditions, demonstrating that the internal excitation and collection method was advantageous in the plasmonic catalysis and SERS signal detection. The LSPR fiber probe was demonstrably qualified to quantitatively detect the concentrations of PATP solutions in the concentration ranges 10−4–10−8 mol∙L−1. Using the LSPR fiber probe, we also realized an in situ kinetics study of the PATP coupling reaction enhanced by plasmonic catalysis. The results showed that the Ag NP-based LSPR fiber probe with internal excitation and collection modes had the advantages of high sensitivity, low cost, facile preparation, and most importantly, applicability to in situ detection in a flexible manner with less damage to the samples. The preliminary study also indicated that it was feasible to combine the LSPR fiber probe with near-field scanning optical microscopy, not only to obtain morphological images of the surface but also to simultaneously perform the plasmonic catalysis reaction and the detection of micro-domains of the surface. This permitted the acquisition of a two-dimensional distributional assessment of surface reactions by the plasmonic catalysis.
  • 加载中
    1. [1]

      Chen, X. J.; Cabello, G.; Wu, D. Y.; Tian, Z. Q. J. Photochem. Photobio. C 2014, 21, 54. doi: 10.1016/j.jphotochemrev.2014.10.003  doi: 10.1016/j.jphotochemrev.2014.10.003

    2. [2]

      Tang, Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 121.  doi: 10.3866/PKU.WHXB201707261

    3. [3]

      Yilmaz, M.; Senlik, E.; Biskin, E.; Yavuz, M. S.; Tamer, U.; Demirel, G. Phys. Chem. Chem. Phys. 2014, 16, 5563. doi: 10.1039/c3cp55087g  doi: 10.1039/c3cp55087g

    4. [4]

      Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C. Anal. Chem. 2014, 86, 1525. doi: 10.1021/ac402935p  doi: 10.1021/ac402935p

    5. [5]

      Ossig, R.; Kwon, Y. H.; Hubenthal, F.; Kronfeldt, H. D. Appl. Phys. B 2012, 106, 835. doi: 10.1007/s00340-011-4866-8  doi: 10.1007/s00340-011-4866-8

    6. [6]

      Cao, J.; Wang, J. New J. Chem. 2015, 39, 2421. doi: 10.1039/c4nj02014f  doi: 10.1039/c4nj02014f

    7. [7]

      Jin, D.; Bai, Y.; Chen, H.; Liu, S.; Chen, N.; Huang, J.; Huang, S.; Chen, Z. Anal. Methods 2015, 7, 1307. doi: 10.1039/c4ay02725f  doi: 10.1039/c4ay02725f

    8. [8]

      Guo, X. D.; Tang, J.; Liu, W. Y.; Guo, H.; Fang, G. C.; Zhao, M. M.; Wang, L.; Xia, M. J.; Liu, J. Acta Phys. Sin. 2017, 66 (4), 44208.  doi: 10.7498/aps.66.044208

    9. [9]

      Lan, X.; Han, Y.; Wei, T.; Zhang, Y.; Jiang, L.; Tsai, H. L.; Xiao, H. Opt. Lett. 2009, 34, 2285. doi: 10.1364/OL.34.002285  doi: 10.1364/OL.34.002285

    10. [10]

      Viets, C.; Hill, W. J. Mol. Struct. 2001, 563564, 163. doi: 10.1016/S0022-2860(00)00876-0  doi: 10.1016/S0022-2860(00)00876-0

    11. [11]

      Cao, J.; Zhao, D.; Mao, Q. RSC Adv. 2015, 5, 99491. doi: 10.1039/c5ra18504a  doi: 10.1039/c5ra18504a

    12. [12]

      Ma, X.; Huo, H.; Wang, W.; Tian, Y.; Wu, N.; Guthy, C.; Shen, M.; Wang, X. Sensors 2010, 10, 11064. doi: 10.3390/s101211064  doi: 10.3390/s101211064

    13. [13]

      Jayawardhana, S.; Kostovski, G.; Mazzolini, A. P.; Stoddart, P. R. Appl. Opt. 2011, 50, 155. doi: 10.1364/AO.50.000155  doi: 10.1364/AO.50.000155

    14. [14]

      Sherry, L. J.; Jin, R.; Mirkin, C. A.; Schatz, G. C.; Van Duyne, R. P. Nano Lett. 2006, 6, 2060. doi: 10.1021/nl061286u  doi: 10.1021/nl061286u

    15. [15]

      Chen, Z.; Dai, Z.; Chen, N.; Liu, S.; Pang, F.; Lu, B.; Wang, T. IEEE Photonic. Technol. Lett. 2014, 26, 777. doi: 10.1109/lpt.2014.2306134  doi: 10.1109/lpt.2014.2306134

    16. [16]

      Huang, Y. F.; Zhang, M.; Zhao, L. B.; Feng, J. M.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Angew. Chem. Int. Ed. 2014, 53, 2353. doi: 10.1002/anie.201310097  doi: 10.1002/anie.201310097

    17. [17]

      Lee, J.; Mubeen, S.; Ji, X.; Stucky, G. D.; Moskovits, M. Nano Lett. 2012, 12, 5014. doi: 10.1021/nl302796f  doi: 10.1021/nl302796f

    18. [18]

      Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Nano Lett. 2013, 13, 240. doi: 10.1021/nl303940z  doi: 10.1021/nl303940z

    19. [19]

      Christopher, P.; Xin, H.; Linic, S. Nat. Chem. 2011, 3, 467. doi: 10.1038/nchem.1032  doi: 10.1038/nchem.1032

    20. [20]

      Christopher, P.; Xin, H.; Marimuthu, A.; Linic, S. Nat. Mater. 2012, 11, 1044. doi: 10.1038/nmat3454  doi: 10.1038/nmat3454

    21. [21]

      He, X.; Tang, T. D.; Yi, J.; Liu, B. J.; Wang, F. F.; Ren, B.; Zhou, J. Z. Acta Phys. -Chim. Sin. 2015, 31, 1575.  doi: 10.3866/PKU.WHXB201506041

    22. [22]

      Chen, B.; Jiao, X.; Chen, D. Cryst. Growth Des. 2010, 10, 3378. doi: 10.1021/cg901497p  doi: 10.1021/cg901497p

    23. [23]

      Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J. Phys. Chem. C 2009, 113, 18212. doi: 10.1021/jp9050929  doi: 10.1021/jp9050929

    24. [24]

      Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Acta Chim. Sin. 2014, 72, 1125. doi: 10.6023/a14080602  doi: 10.6023/a14080602

    25. [25]

      Kafle, B.; Poveda, M.; Habteyes, T. G. J. Phys. Chem. Lett. 2017, 8, 890. doi: 10.1021/acs.jpclett.7b00106  doi: 10.1021/acs.jpclett.7b00106

    26. [26]

      Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzan, L. M.; Perez-Juste, J.; Pastoriza-Santos, I. Langmuir 2013, 29, 15076. doi: 10.1021/la403707j  doi: 10.1021/la403707j

    27. [27]

      Cao, J.; Zhao, D.; Mao, Q. Analyst 2017, 142, 596. doi: 10.1039/c6an02414a  doi: 10.1039/c6an02414a

    28. [28]

      Foti, A.; D'Andrea, C.; Bonaccorso, F.; Lanza, M.; Calogero, G.; Messina, E.; Maragò, O. M.; Fazio, B.; Gucciardi, P. G. Plasmonics 2013, 8, 13. doi: 10.1007/s11468-012-9371-3  doi: 10.1007/s11468-012-9371-3

    29. [29]

      Jayawardhana, S.; Rosa, L.; Juodkazis, S.; Stoddart, P. R. Sci. Rep. 2013, 3, 2335. doi: 10.1038/srep02335  doi: 10.1038/srep02335

    30. [30]

      Yan, X.; Wang, L.; Tan, X.; Tian, B.; Zhang, J. Sci. Rep. 2016, 6, 30193. doi: 10.1038/srep30193  doi: 10.1038/srep30193

    31. [31]

      Qi, D.; Yan, X.; Wang, L.; Zhang, J. Chem. Commun. 2015, 51, 8813. doi: 10.1039/c5cc02468d  doi: 10.1039/c5cc02468d

    32. [32]

      Yan, X.; Xu, Y.; Tian, B.; Lei, J.; Zhang, J.; Wang, L. Appl. Catal. B: Environ. 2018, 224, 305. doi: 10.1016/j.apcatb.2017.10.009  doi: 10.1016/j.apcatb.2017.10.009

    33. [33]

      Xie, W.; Schlucker, S. Chem. Commun. 2018, 54, 2326. doi: 10.1039/c7cc07951f  doi: 10.1039/c7cc07951f

    34. [34]

      Joseph, V.; Engelbrekt, C.; Zhang, J.; Gernert, U.; Ulstrup, J.; Kneipp, J. Angew. Chem. Int. Ed. 2012, 51, 7592. doi: 10.1002/anie.20120352  doi: 10.1002/anie.20120352

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    20. [20]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

Metrics
  • PDF Downloads(9)
  • Abstract views(239)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return