Citation: FENG Shiyu, LU Hao, LIU Zekun, LIU Yahui, LI Cuihong, BO Zhishan. Designing a High-Performance A-D-A Fused-Ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 355-360. doi: 10.3866/PKU.WHXB201805161 shu

Designing a High-Performance A-D-A Fused-Ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups

  • Corresponding author: LI Cuihong, licuihong@bnu.edu.cn BO Zhishan, zsbo@bnu.edu.cn
  • Received Date: 23 April 2018
    Revised Date: 11 May 2018
    Accepted Date: 11 May 2018
    Available Online: 16 April 2018

    Fund Project: the Beijing Natural Science Foundation, China 2182030The project was supported by the National Natural Science Foundation of China (21574013) and the Beijing Natural Science Foundation, China (2182030)the National Natural Science Foundation of China 21574013

  • Recently, non-fullerene polymer solar cells (NPSCs) have been developed rapidly because of the flexible energy-level variability and excellent optical absorption properties of non-fullerene electron acceptors. Among them, fused-ring electron acceptors (FREAs) with acceptor-donor- acceptor (A-D-A) structures have been extensively exploited in high-performance NPSCs. These FREAs often employ central aromatic fused rings attached to several rigid side-chains and flanked by two electron-deficient terminals. Many efforts have focused on the modification of the central flat conjugated backbone in order to gain broad and strong absorption and dense stacking. However, the preparation of such FREAs is relatively complex, especially for large fused-ring structures. In a previous work, we provided a simple and useful method to extend the effective conjugation length and broaden the absorption spectrum of the acceptor by noncovalent intramolecular interactions. On this basis, in this work, we have designed and synthesized a new A-D-A-type FREA (ITOIC-2Cl) that uses 4, 9-dihydro-s-indaceno[1, 2-b:5, 6-b']dithiophene (IDT) as a central donor unit, bis(alkoxy)-substituted thiophene rings as conformational locking π-bridges between the donor and acceptor units, and cyanoindanones modified with two high-electron-affinity chlorine atoms as end-capping acceptor units. On one hand, we can attain good backbone planarity in the solid state via the noncovalent conformational locking induced by sulfur−oxygen (S···O) and oxygen−hydrogen (CH···O) interactions, which are not strong enough to lock the coplanar conformation in solution, thus simultaneously endowing ITOIC-2Cl with good solubility. On the other hand, we can enhance the intramolecular charge transfer by enhancing the electron deficiency of the terminal groups. The optical and electrochemical properties of ITOIC-2Cl were systematically explored. Moreover, in combination with the donor polymer of [(2, 6-(4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1, 2-b:4, 5-b']dithiophene))-alt-(5, 5-(1', 3'-di-2-thienyl-5', 7'-bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4, 8-dione))] (PBDB-T), the photovoltaic performances of the devices and the corresponding blend morphologies were studied. ITOIC-2Cl exhibited a broad absorption spectrum up to 900 nm, which is beneficial for broad harvesting of photons across the visible and NIR region. The PBDB-T:ITOIC-2Cl-based blend films exhibited favorable fibrous nanostructures with appropriate nanoscale phase separation, verified by atomic force microscopy and transmission electron microscopy characterizations. This morphology is beneficial for charge transport. Through the space-charge-limited current measurement, the PBDB-T:ITOIC-2Cl-based device exhibited the high hole/electron mobility of 1.85 × 10−4/1.19 × 10−4 cm2∙V−1∙s−1. The PBDB-T:ITOIC-2Cl-based devices obtained a high power conversion efficiency of 9.37%, with an open-circuit voltage (Voc) of 0.886 V, short-circuit current (Jsc) of 17.09 mA cm−2, and a fill factor (FF) of 61.8%. These results thus demonstrate the efficacy of the proposed strategy for designing high-performance non-fullerene FREAs.
  • 加载中
    1. [1]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270(5243), 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Chem. Rev. 2015, 115(23), 12666. doi: 10.1021/acs.chemrev.5b00098  doi: 10.1021/acs.chemrev.5b00098

    3. [3]

      Li, Y. F. Acc. Chem. Res. 2012, 45(5), 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    4. [4]

      Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93(4), 393. doi: 10.1016/j.solmat.2008.12.008  doi: 10.1016/j.solmat.2008.12.008

    5. [5]

      Zhao, Y.F.; Zou, W.J.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Chin. J. Polym. Sci. 2017, 35(2), 261. doi: 10.1007/s10118-017-1875-z  doi: 10.1007/s10118-017-1875-z

    6. [6]

      Gelinas, S.; Rao, A.; Kumar, A.; Smith, S. L.; Chin, A. W.; Clark, J.; van der Poll, T. S.; Bazan, G. C.; Friend, R. H. Science2014, 343(6170), 512. doi:10.1126/science.1246249  doi: 10.1126/science.1246249

    7. [7]

      Zhao, J. B.; Li, Y. K.; Yang, G. F.; Jiang, K.; Lin, H. R.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027. doi: 10.1038/nenergy.2015.27  doi: 10.1038/nenergy.2015.27

    8. [8]

      Lin, Y. Z.; Zhang, Z. G.; Bai, H. T.; Wang, J. Y.; Yao, Y. H.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. Energy Environ. Sci. 2015, 8(2), 610. doi: 10.1039/c4ee03424d  doi: 10.1039/c4ee03424d

    9. [9]

      Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. Adv. Mater. 2015, 27(7), 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    10. [10]

      Fan, Q. P.; Su, W. Y.; Wang, Y.; Guo, B.; Jiang, Y. F.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M. J.; Li, Y. F. Sci. China Chem. 2018, 61, 531. doi: 10.1007/s11426-017-9199-1  doi: 10.1007/s11426-017-9199-1

    11. [11]

      Zhao, W. C.; Li, S. S.; Yao, H. F.; Zhang, S. Q.; Zhang, Y.; Yang, B.; Hou, J. H. J. Am. Chem. Soc. 2017, 139(21), 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    12. [12]

      Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Adv. Mater. 2018. doi: 10.1002/adma.201800868  doi: 10.1002/adma.201800868

    13. [13]

      Liu, Y. H.; Zhang, Z.; Feng, S. Y.; Li, M.; Wu, L. L.; Hou, R.; Xu, X. J.; Chen, X. B.; Bo, Z. S. J. Am. Chem. Soc. 2017, 139(9), 3356. doi: 10.1021/jacs.7b00566  doi: 10.1021/jacs.7b00566

    14. [14]

      Hou, J. H.; Inganas, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17(2), 119. doi: 10.1038/nmat5063  doi: 10.1038/nmat5063

    15. [15]

      Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Chem. Rev. 2018. doi: 10.1021/acs.chemrev.7b00535  doi: 10.1021/acs.chemrev.7b00535

    16. [16]

      Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Nat. Rev. Mater. 2018, 3, 18003. doi: 10.1038/natrevmats.2018.3  doi: 10.1038/natrevmats.2018.3

    17. [17]

      Yang, Y.; Jiang, X.; Zhan, X. W.; Chen, X. G. Acta Phys. -Chim. Sin. 2019, 35, 257.  doi: 10.3866/PKU.WHXB201803191

    18. [18]

      Feng, S. Y.; Ma, D. Y.; Wu, L. L.; Liu, Y. H.; Zhang, C. E.; Xu, X. J.; Chen, X. B.; Yan, S. K.; Bo, Z. S. Sci. China Chem. 2018, doi: 10.1007/s11426-018-9252-9  doi: 10.1007/s11426-018-9252-9

    19. [19]

      Yao, H. F.; Chen, Y.; Qin, Y. P.; Yu, R. N.; Cui, Y.; Yang, B.; Li, S. S.; Zhang, K.; Hou, J. H. Adv. Mater. 2016, 28(37), 8283. doi: 10.1002/adma.201602642  doi: 10.1002/adma.201602642

    20. [20]

      Tang, M. L.; Oh, J. H.; Reichardt, A. D.; Bao, Z. N. J. Am. Chem. Soc. 2009, 131(10), 3733. doi: 10.1021/ja809045s  doi: 10.1021/ja809045s

    21. [21]

      Li, Y. X.; Lin, J. D.; Che, X. Z.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. J. Am. Chem. Soc. 2017, 139(47), 17114. doi: 10.1021/jacs.7b11278  doi: 10.1021/jacs.7b11278

    22. [22]

      Cui, Y.; Yang, C. Y.; Yao, H. F.; Zhu, J.; Wang, Y. M.; Jia, G. X.; Gao, F.; Hou, J. H. Adv. Mater. 2017, 29(43). doi: 10.1002/adma.201703080  doi: 10.1002/adma.201703080

    23. [23]

      Zhang, C.; Nguyen, T. H.; Sun, J. Y.; Li, R.; Black, S.; Bonner, C. E.; Sun, S. S. Macromolecules 2009, 42(3), 663. doi: 10.1021/ma802621b  doi: 10.1021/ma802621b

    24. [24]

      Yao, H. F.; Cui, Y.; Yu, R. N.; Gao, B. W.; Zhang, H.; Hou, J. H. Angew. Chem. Int. Ed. 2017, 56(11), 3045. doi: 10.1002/anie.201610944  doi: 10.1002/anie.201610944

    25. [25]

      Xu, X. P.; Zhang, G. J.; Zhao, Y. Z.; Liu, J.; Li, Y.; Peng, Q. Chin. J. Polym. Sci. 2017, 35(2), 249.

    26. [26]

      Li, Y. X.; Qian, D. P.; Zhong, L.; Lin, J. D.; Jiang, Z. Q.; Zhang, Z. G.; Zhang, Z. J.; Li, Y. F.; Liao, L. S.; Zhang, F. L. Nano Energy 2016, 27, 430. doi: 10.1016/j.nanoen.2016.07.019  doi: 10.1016/j.nanoen.2016.07.019

    27. [27]

      Feng, S. Y.; Hou, R.; Xu, Q.; Liu, Y. H.; Zhang, J. Q.; Gong, X.; Li, C. H.; Lu, K.; Wei, Z. X.; Bo, Z. S. Sol. Energy Mater. Sol. Cells 2016, 154, 42. doi: 10.1016/j.solmat.2016.04.026  doi: 10.1016/j.solmat.2016.04.026

    28. [28]

      Yuan, J.; Hua, Y.; Zhu, C.; Shen, P.; Wan, M. X.; Feng, L. L.; Zou, Y. P. Acta Phys. -Chim. Sin. 2018, 34, 1272.  doi: 10.3866/PKU.WHXB201803221

    29. [29]

      Feng, S. Y.; Zhang, C. E.; Liu, Y. H.; Bi, Z. Z.; Zhang, Z.; Xu, X. J.; Ma, W.; Bo, Z. S. Adv. Mater. 2017, 29(42). doi: 10.1002/adma.201703527  doi: 10.1002/adma.201703527

    30. [30]

      Zhang, C. E.; Feng, S. Y.; Liu, Y. H.; Hou, R.; Zhang, Z.; Xu, X. J.; Wu, Y. Z.; Bo, Z. S. ACS Appl. Mater. Interfaces 2017, 9(39), 33906. doi: 10.1021/acsami.7b09915  doi: 10.1021/acsami.7b09915

    31. [31]

      Li, W. W.; Hendriks, K. H.; Furlan, A.; Roelofs, W. S. C.; Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2013, 135(50), 18942. doi: 10.1021/ja4101003  doi: 10.1021/ja4101003

    32. [32]

      Jia, G. X.; Zhang, S. Q.; Yang, L. Y.; He, C.; Fan, H. L.; Hou, J. H. Acta Phys. -Chim. Sin. 2019, 35, 76.  doi: 10.3866/PKU.WHXB201712063

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    18. [18]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(26)
  • Abstract views(825)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return