Citation: CHEN Lu, LIU Jun, WANG Yong, ZHANG Ze. Characterization of α-Cu2Se Fine Structure by Spherical-Aberration-Corrected Scanning Transmission Electron Microscope[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 139-144. doi: 10.3866/PKU.WHXB201805111 shu

Characterization of α-Cu2Se Fine Structure by Spherical-Aberration-Corrected Scanning Transmission Electron Microscope

  • Corresponding author: WANG Yong, yongwang@zju.edu.cn ZHANG Ze, zezhang@zju.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 8 May 2018
    Accepted Date: 9 May 2018
    Available Online: 11 January 2018

    Fund Project: the National Natural Science Foundation of China 11327901The project was supported by the National Natural Science Foundation of China (51390474, 11327901)the National Natural Science Foundation of China 51390474

  • The structure of low-temperature α-Cu2Se, which is of great importance for understanding the mechanism of the significant increase in thermoelectric performance during the α-β phase transition of Cu2Se, has still not been fully solved. Because it is restricted by the quality of polycrystal and powder specimens and the accuracy of characterization methods such as the conventional transmission electron microscopy (TEM) and X-ray diffraction (XRD), direct observation with atomic-scale resolution to reveal the structural details has not been realized, although electron diffraction and high-resolution transmission electron microscopy (HRTEM) studies have indicated the complexity of the α-Cu2Se layered structure. Owing to developments in the focused ion beam (FIB) milling preparation method, high-quality single crystalline specimens with specific crystallographic orientations can be prepared to ensure that atomic-resolution images along a specific orientation can be acquired. Furthermore, the developments in aberration correction technology in TEM and scanning transmission electron microscopy (STEM) allow us to observe the subtle details of structural variation and evolution. Herein, we report, for the first time, the atomic-resolution high-angle annular dark field (HAADF) images acquired along the \begin{document}$ {{\left[ \bar{1}\bar{1}2 \right]}_{\text{c}}}$\end{document} axis of α-Cu2Se using spherical-aberration (Cs)-corrected STEM from FIB-prepared single crystalline specimens. The observations revealed that the complex structure is generated by ordered fluctuations of Se atoms with various forms, including that some of the Se atoms on the two sides of the Cu deficiency layer get closer to each other than the others and the neighboring Cu deficiency layers have different forms of ordered Se fluctuations. These characteristics can only be observed along the \begin{document}$ {{\left[ \bar{1}\bar{1}2 \right]}_{\text{c}}}$\end{document} axis, while these details were not visible in a previous study along the \begin{document}$ <\bar{1}10{{>}_{\text{c}}} $\end{document} axis or in our results obtained along the \begin{document}${{\left[ \bar{1}01 \right]}_{\text{c}}} $\end{document} axis. By combining the electron diffraction patterns, several models of the unit cell variants were established, including the two-layer and four-layer cells (both have two different shapes) and the two-layer variants with and without central symmetry. These variants can also transform into each other, and an α-Cu2Se crystal can be formed through the random assembly of these variants. Using the program QSTEM, the corresponding HAADF images of these variants were simulated. The simulation results were similar to the experimental HAADF images and reflected most of the observed details, including the different forms of the ordered fluctuations of Se atoms and the dispersion of Cu atoms, which indicates that our structure models of α-Cu2Se are reasonable. This work provides new critical information for thoroughly understanding the structure of α-Cu2Se and the α-β phase transition of Cu2Se.
  • 加载中
    1. [1]

      Ogorelec, Z.; Celustka, B. J. Phys. Chem. Solids 1966, 27 (3), 615. doi: 10.1016/0022-3697(66)90208-3  doi: 10.1016/0022-3697(66)90208-3

    2. [2]

      Routie, R.; Sudres, M.; Mahenc, J. J. Electroanal. Chem. 1970, 25 (3), 489. doi: 10.1016/s0022-0728(70)80110-3  doi: 10.1016/s0022-0728(70)80110-3

    3. [3]

      Okamoto, K. Jpn. J. Appl. Phys. 1971, 10 (4), 508. doi: 10.1143/jjap.10.508  doi: 10.1143/jjap.10.508

    4. [4]

      El Akkad, F.; Mansour, B.; Hendeya, T. Mater. Res. Bull. 1981, 16 (5), 535. doi: 10.1016/0025-5408(81)90119-7  doi: 10.1016/0025-5408(81)90119-7

    5. [5]

      Balapanov, M. K.; Zinnurov, I. B.; Akmanova, G. R. Phys. Solid State 2006, 48 (10), 1868. doi: 10.1134/s1063783406100076  doi: 10.1134/s1063783406100076

    6. [6]

      Zhang, Y.; Hu, C. G.; Zheng, C. H.; Xi, Y.; Wan, B. Y. J. Phys. Chem. C 2010, 114 (35), 14849. doi: 10.1021/jp105592d  doi: 10.1021/jp105592d

    7. [7]

      Xiao, X. X.; Xie, W. J.; Tang, X. F.; Zhang, Q. J. Chin. Phys. B 2011, 20 (8), 087201. doi: 10.1088/1674-1056/20/8/087201  doi: 10.1088/1674-1056/20/8/087201

    8. [8]

      Liu, H. L.; Shi, X.; Xu, F. F.; Zhang, L. L.; Zhang, W. Q.; Chen, L. D.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Nat. Mater. 2012, 11 (5), 422. doi: 10.1038/nmat3273  doi: 10.1038/nmat3273

    9. [9]

      Yu, B.; Liu, W. S.; Chen, S.; Wang, H.; Wang, H. Z.; Chen, G.; Ren, Z. F. Nano Energy 2012, 1 (3), 472. doi: 10.1016/j.nanoen.2012.02.010  doi: 10.1016/j.nanoen.2012.02.010

    10. [10]

      Ballikaya, S.; Chi, H.; Salvador, J. R.; Uher, C. J. Mater. Chem. A 2013, 1 (40), 12478. doi: 10.1039/c3ta12508d  doi: 10.1039/c3ta12508d

    11. [11]

      Brown, D. R.; Day, T.; Borup, K. A.; Christensen, S.; Iversen, B. B.; Snyder, G. J. APL Mater. 2013, 1 (5), 052107. doi: 10.1063/1.4827595  doi: 10.1063/1.4827595

    12. [12]

      Liu, H. L.; Shi, X.; Kirkham, M.; Wang, H.; Li, Q.; Uher, C.; Zhang, W. Q.; Chen, L. D. Mater. Lett. 2013, 93, 121. doi: 10.1016/j.matlet.2012.11.058  doi: 10.1016/j.matlet.2012.11.058

    13. [13]

      Liu, H. L.; Yuan, X.; Lu, P.; Shi, X.; Xu, F. F.; He, Y.; Tang, Y. S.; Bai, S. Q.; Zhang, W. Q.; Chen, L. D.; et al. Adv. Mater. 2013, 25 (45), 6607. doi: 10.1002/adma.201302660  doi: 10.1002/adma.201302660

    14. [14]

      Brown, D. R.; Heijl, R.; Borup, K. A.; Iversen, B. B.; Palmqvist, A.; Snyder, G. J. Phys. Status Solidi RRL 2016, 10 (8), 618. doi: 10.1002/pssr.201600160  doi: 10.1002/pssr.201600160

    15. [15]

      Heyding, R. D.; Murray, R. M. Can. J. Chem. 1976, 54 (6), 841. doi: 10.1139/v76-122  doi: 10.1139/v76-122

    16. [16]

      Oliveria, M.; McMullan, R. K.; Wuensch, B. J. Solid State Ion. 1988, 28, 1332. doi: 10.1016/0167-2738(88)90382-7  doi: 10.1016/0167-2738(88)90382-7

    17. [17]

      Sakuma, T.; Sugiyama, K.; Matsubara, E.; Waseda, Y. Mater. Trans. JIM 1989, 30 (5), 365. doi: 10.2320/matertrans1989.30.365  doi: 10.2320/matertrans1989.30.365

    18. [18]

      Yamamoto, K.; Kashida, S. Solid State Ion. 1991, 48 (3–4), 241. doi: 10.1016/0167-2738(91)90038-d  doi: 10.1016/0167-2738(91)90038-d

    19. [19]

      Yamamoto, K.; Kashida, S. J. Solid State Chem. 1991, 93 (1), 202. doi: 10.1016/0022-4596(91)90289-t  doi: 10.1016/0022-4596(91)90289-t

    20. [20]

      Skomorokhov, A. N.; Trots, D. M.; Knapp, M.; Bickulova, N. N.; Fuess, H. J. Alloy. Compd. 2006, 421 (1–2), 64. doi: 10.1016/j.jallcom.2005.10.079  doi: 10.1016/j.jallcom.2005.10.079

    21. [21]

      Eikeland, E.; Blichfeld, A. B.; Borup, K. A.; Zhao, K. P.; Overgaard, J.; Shi, X.; Chen, L. D.; Iversen, B. B. IUCrJ 2017, 4, 476. doi: 10.1107/s2052252517005553  doi: 10.1107/s2052252517005553

    22. [22]

      Rahlfs, P. Z. Phys. Chem. 1936, 31 (1), 157. doi: 10.1515/zpch-1936-3114  doi: 10.1515/zpch-1936-3114

    23. [23]

      Milat, O.; Vucic, Z.; Ruscic, B. Solid State Ion. 1987, 23 (1–2), 37. doi: 10.1016/0167-2738(87)90079-8  doi: 10.1016/0167-2738(87)90079-8

    24. [24]

      Kashida, S.; Akai, J. J. Phys. C 1988, 21 (31), 5329. doi: 10.1088/0022-3719/21/31/004  doi: 10.1088/0022-3719/21/31/004

    25. [25]

      Frangis, N.; Manolikas, C.; Amelinckx, S. Phys. Status Solidi A 1991, 126 (1), 9. doi: 10.1002/pssa.2211260102  doi: 10.1002/pssa.2211260102

    26. [26]

      Gulay, L.; Daszkiewicz, M.; Strok, O.; Pietraszko, A. Chem. Met. Alloy. 2011, 4 (3–4), 200.

    27. [27]

      Lu, P.; Liu, H. L.; Yuan, X.; Xu, F. F.; Shi, X.; Zhao, K. P.; Qiu, W. J.; Zhang, W. Q.; Chen, L. D. J. Mater. Chem. A 2015, 3 (13), 6901. doi: 10.1039/c4ta07100j  doi: 10.1039/c4ta07100j

    28. [28]

      Nguyen, M. C.; Choi, J. H.; Zhao, X.; Wang, C. Z.; Zhang, Z.; Ho, K. M. Phys. Rev. Lett. 2013, 111 (16), 165502. doi: 10.1103/PhysRevLett.111.165502  doi: 10.1103/PhysRevLett.111.165502

    29. [29]

      Chi, H.; Kim, H.; Thomas, J. C.; Shi, G. S.; Sun, K.; Abeykoon, M.; Bozin, E. S.; Shi, X. Y.; Li, Q.; Shi, X.; et al. Phys. Rev. B 2014, 89 (19), 195209. doi: 10.1103/PhysRevB.89.195209  doi: 10.1103/PhysRevB.89.195209

    30. [30]

      Choi, J. H.; Han, Y. K. Curr. Appl. Phys. 2015, 15 (11), 1417. doi: 10.1016/j.cap.2015.08.006  doi: 10.1016/j.cap.2015.08.006

    31. [31]

      Li, L.; Gan, Z.; McCartney, M. R.; Liang, H.; Yu, H.; Gao, Y.; Wang, J.; Smith, D. J. Sci. Rep. 2013, 3, 3229. doi: 10.1038/srep03229  doi: 10.1038/srep03229

    32. [32]

      Huang, W.; Wu, C. Y.; Zeng, Y. W.; Jin, C. H.; Zhang, Z. Acta Phys. -Chim. Sin. 2016, 32 (9), 2287.  doi: 10.3866/PKU.WHXB201605164

    33. [33]

      Gao, P.; Zhang, Z.; Li, M.; Ishikawa, R.; Feng, B.; Liu, H. J.; Huang, Y. L.; Shibata, N.; Ma, X.; Chen, S.; et al. Nat. Commun. 2017, 8, 15549. doi: 10.1038/ncomms15549  doi: 10.1038/ncomms15549

    34. [34]

      Lü, D. H.; Zhu, D. C.; Jin, C. H. Acta Phys. -Chim. Sin. 2017, 33 (8), 1514.  doi: 10.3866/PKU.WHXB201705123

    35. [35]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357 (6349), 389. doi: 10.1126/science.aah4321  doi: 10.1126/science.aah4321

    36. [36]

      Takahashi, T.; Yamamoto, O.; Matsuyama, F.; Noda, Y. J. Solid State Chem. 1976, 16 (1–2), 35. doi: 10.1016/0022-4596(76)90004-9  doi: 10.1016/0022-4596(76)90004-9

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    3. [3]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    4. [4]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    16. [16]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    19. [19]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(13)
  • Abstract views(767)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return