Citation: HU Jiangtao, ZHENG Jiaxin, PAN Feng. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 361-370. doi: 10.3866/PKU.WHXB201805102 shu

Research Progress into the Structure and Performance of LiFePO4 Cathode Materials

  • Corresponding author: PAN Feng, panfeng@pkusz.edu.cn
  • Received Date: 23 April 2018
    Revised Date: 7 May 2018
    Accepted Date: 7 May 2018
    Available Online: 10 April 2018

    Fund Project: The project was supported by the National Materials Genome Project, China (2016YFB0700600) and Guangdong Innovation Team Project, China (2013N080)Guangdong Innovation Team Project, China 2013N080the National Materials Genome Project, China 2016YFB0700600

  • Lithium-ion batteries (LIBs) possess many virtues, such as low weight, a high energy density, and a long service life, and are regarded as an essential component of a low-carbon economy. Nowadays, LIBs are widely used in consumer electronics, as well as military and aviation products, and are the focus of significant research in the emerging field of energy materials. The cathode material is one of the most important parts of the LIB; its electrochemical performance plays an important role in the battery voltage, power/energy density, cycle life, and safety. LiFePO4 is a superior cathode material compared to spinel manganite (LiMn2O4) and layered lithium nickel-cobalt-manganese oxide (LiMO2 (M = Mn, Co, Ni)), and LiFePO4 has many advantages, such as excellent thermal stability, cycling performance, economic viability, and environmental friendliness. The theoretical diffusion coefficient of LiFePO4 is 10−8 cm2∙s−1, which is sufficient for Li+ de-intercalation in nanoparticles. However, the one-dimensional transport channels are easily blocked by structural defects, resulting in a lower diffusion coefficient and poor rate performance. The electronic conductivity of LiFePO4 is about 10−8 S∙cm−1, and this also limits the rate performance. Moreover, the low-temperature performance, low yield, and patent problems are also significant problems facing LiFePO4. In contrast, the stability and cost are not significant limitations to more extensive applications; rather, it is the energy density and power density that must be improved. To meet the above demands, in-depth research on the factors affecting the electrochemical performance of LiFePO4 is required. Many factors affect the electrochemical performance of LiFePO4, such as the synthetic method, particle size, electrolyte environment, electrode structure, and temperature. Based on the current state of research into LiFePO4, we have focused our review on the following three aspects: the characteristics of the nanoparticles, interface environment of the material, and the electrode structure. Finally, we summarize the relationship between the structure and electrochemical performance of LiFePO4 cathode materials: (1) the bulk phase characteristics of the material (phase structure, doping, nanocrystallization, defects, and lithium-ion transport mechanism), (2) interface structure and interface reconstruction under different electrolyte environments, and (3) the electrode structure. Our conclusions have great significance for future research.
  • 加载中
    1. [1]

      Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571  doi: 10.1149/1.1837571

    2. [2]

      Wang, J.; Yang, J.; Zhang, Y.; Li, Y.; Tang, Y.; Banis, M. N.; Li, X.; Liang, G.; Li, R.; Sun, X. Adv. Funct. Mater. 2013, 23, 806. doi: 10.1002/adfm.201201310  doi: 10.1002/adfm.201201310

    3. [3]

      Malik, R.; Abdellahi, A.; Ceder, G. J. Electrochem. Soc. 2013, 160, A3179. doi: 10.1149/2.029305jes  doi: 10.1149/2.029305jes

    4. [4]

      Wang, J.; Yang, J.; Tang, Y.; Liu, J.; Zhang, Y.; Liang, G.; Gauthier, M.; Chen-Wiegart, Y. C.; Norouzi Banis, M.; Li, X.; et al. Nat. Commun. 2014, 5, 3415. doi: 10.1038/ncomms4415  doi: 10.1038/ncomms4415

    5. [5]

      Zheng, J.; Hou, Y.; Duan, Y.; Song, X.; Wei, Y.; Liu, T.; Hu, J.; Guo, H.; Zhuo, Z.; Liu, L.; et al. Nano Lett. 2015, 15, 6102. doi: 10.1021/acs.nanolett.5b02379  doi: 10.1021/acs.nanolett.5b02379

    6. [6]

      Wu, R.; Xia, G.; Shen, S.; Zhu, F.; Jiang, F.; Zhang, J. RSC Adv. 2014, 4, 21325. doi: 10.1039/c4ra00370e  doi: 10.1039/c4ra00370e

    7. [7]

      Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aurbach, D. Angew. Chem.-Int. Edit. 2009, 48, 8559. doi: 10.1002/anie.200903587  doi: 10.1002/anie.200903587

    8. [8]

      Ravet, N.; Abouimrane, A.; Armand, M. Nat. Mater. 2003, 2, 702. doi: 10.1038/nmat1009a  doi: 10.1038/nmat1009a

    9. [9]

      Wang, H.; Wang, R.; Liu, L.; Jiang, S.; Ni, L.; Bie, X.; Yang, X.; Hu, J.; Wang, Z.; Chen, H.; et al.Nano Energy 2017, 39, 346. doi: 10.1016/j.nanoen.2017.07.001  doi: 10.1016/j.nanoen.2017.07.001

    10. [10]

      Wang, Z.; Tan, R.; Wang, H.; Yang, L.; Hu, J.; Chen, H.; Pan, F. Adv. Mater. 2018, 30, 1704436. doi: 10.1002/adma.201704436  doi: 10.1002/adma.201704436

    11. [11]

      Fei, H.; Peng, Z.; Yang, Y.; Li, L.; Raji, A. R.; Samuel, E. L.; Tour, J. M. Chem. Commun. 2014, 50, 7117. doi: 10.1039/c4cc02123a  doi: 10.1039/c4cc02123a

    12. [12]

      Wu, Z.; Ji, S.; Liu, T.; Duan, Y.; Xiao, S.; Lin, Y.; Xu, K.; Pan, F. Nano letters 2016, 16, 6357. doi: 10.1021/acs.nanolett.6b02742  doi: 10.1021/acs.nanolett.6b02742

    13. [13]

      Kim, S. B.; Lee, K. J.; Choi, W. J.; Kim, W. S.; Jang, I. C.; Lim, H. H.; Lee, Y. S. J. Solid State Electr. 2010, 14, 919. doi: 10.1007/s10008-009-0873-7  doi: 10.1007/s10008-009-0873-7

    14. [14]

      Kim, W. S.; Kim, S. B.; Jang, I. C.; Lim, H. H.; Lee, Y. S. J. Alloys Compd. 2010, 492, L87. doi: 10.1016/j.jallcom.2009.12.034  doi: 10.1016/j.jallcom.2009.12.034

    15. [15]

      Delacourt, C.; Delacourt, C.; Laffont, L.; Bouchet, R.; C. Wurma, J. B. L.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. J. Electrochem. Soc. 2005, 152, A913. doi: 10.1149/1.1884787  doi: 10.1149/1.1884787

    16. [16]

      Oh, S.M.; Myung, S. T.; Choi, Y. S.; Oh, K. H.; Sun, Y. K. J. Mater. Chem. 2011, 21, 19368. doi: 10.1039/c1jm13889h  doi: 10.1039/c1jm13889h

    17. [17]

      Yamada, A.; Takei, Y.; Koizumi, H.; Noriyuki Sonoyama, A.; Kanno, R.; Itoh, K.; And, M. Y.; Kamiyama, T. Chem. Mater. 2006, 18, 804. doi: 10.1021/cm051861f  doi: 10.1021/cm051861f

    18. [18]

      Zhuo, Z.; Hu, J.; Duan, Y.; Yang, W.; Pan, F. Appl. Phys. Lett. 2016, 109, 587. doi: 10.1063/1.4958639  doi: 10.1063/1.4958639

    19. [19]

      Thackeray, M. M.; Shaohorn, Y.; Kahaian, A. J.; Kepler, K. D.; Skinner, E.; Vaughey, J. T.; Hackney, S. A. Electrochem. Solid ST 1998, 1, 7. doi: 10.1149/1.1390617  doi: 10.1149/1.1390617

    20. [20]

      Su, Y.; Cui, S.; Zhuo, Z.; Yang, W.; Wang, X.; Pan, F. ACS Appl. Mater. Inter. 2015, 7, 25105. doi: 10.1021/acsami.5b05500  doi: 10.1021/acsami.5b05500

    21. [21]

      Xie Y.; Ma L. J. Centr. South Univ. 1985, 8, 5.

    22. [22]

      PARK, J. K. Principles and Applications of Lithium Secondary Batteries; China Machine Press: Beijing, 2014; pp. 44–47; translated by Zhang, Z. ; Du, K. ; Ren, X.

    23. [23]

      Rabanal, M. E.; Gutierrez, M. C.; Garcia-Alvarado, F.; Gonzalo, E. C.; Dompablo, A. D. J. Power Sources 2006, 160, 523. doi: 10.1016/j.jpowsour.2005.12.071  doi: 10.1016/j.jpowsour.2005.12.071

    24. [24]

      Lloris, J. M.; Vicente, C. P. R.; Tirado, J. L. Electrochem. Solid St. 2002, 5, A234. doi: 10.1149/1.1507941  doi: 10.1149/1.1507941

    25. [25]

      Li, H. H.; Jin, J.; Wei, J. P.; Zhou, Z.; Yan, J. Electrochem. Comm. 2009, 11, 95. doi: 10.1016/j.elecom.2008.10.025  doi: 10.1016/j.elecom.2008.10.025

    26. [26]

      Wang, F.; Yang, J.; Nuli, Y.; Wang, J. J. Power Sources 2010, 195, 6884. doi: 10.1016/j.jpowsour.2010.04.071  doi: 10.1016/j.jpowsour.2010.04.071

    27. [27]

      Wolfenstine, J.; Read, J.; Allen, J. L. J. Power Sources 2007, 163, 1070. doi: 10.1016/j.jpowsour.2006.10.010  doi: 10.1016/j.jpowsour.2006.10.010

    28. [28]

      Aurbach, D. ECS Meeting 2013, 53, 134.

    29. [29]

      Nakayama, M.; Goto, S.; Uchimoto, Y.; Wakihara, M.; Kitajima, Y. Chem. Mater. 2004, 16, 3399. doi: 10.1021/cm049230t  doi: 10.1021/cm049230t

    30. [30]

      Singh, V.; Gershinsky, Y.; Kosa, M.; Dixit, M.; Zitoun, D.; Major, D. T. Phys. Chem. Chem. Phys. 2015, 17, 31202. doi: 10.1039/c5cp04871k  doi: 10.1039/c5cp04871k

    31. [31]

      Allen, J. L.; Jow, T. R.; Wolfenstine, J. J. Power Sources 2011, 196, 8656. doi: 10.1016/j.jpowsour.2011.06.057  doi: 10.1016/j.jpowsour.2011.06.057

    32. [32]

      Cherkashinin, G.; Sharath, S. U.; Jaegermann, W. Adv. Energy Mater. 2017, 7, 1602321. doi: 10.1002/aenm.201602321  doi: 10.1002/aenm.201602321

    33. [33]

      Kreder, K. J.; Manthiram, A. ACS Energy Lett. 2016, 2, 64. doi: 10.1021/acsenergylett.6b00496  doi: 10.1021/acsenergylett.6b00496

    34. [34]

      Deniard, P.; Dulac, A. M.; Rocquefelte, X.; Grigorova, V.; Lebacq, O.; Pasturel, A.; Jobic, S. J. Phys Chem. Solids 2004, 65, 229. doi: 10.1016/j.jpcs.2003.10.019  doi: 10.1016/j.jpcs.2003.10.019

    35. [35]

      Okada, S.; Sawa, S.; Egashira, M.; Yamaki, J. I.; Tabuchi, M.; Kageyama, H.; Konishi, T.; Yoshino, A. J. Power Sources 2001, s97–98, 430. doi: 10.1016/S0378-7753(01)00631-0  doi: 10.1016/S0378-7753(01)00631-0

    36. [36]

      Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. Solid State Commun. 2004, 132, 181. doi: 10.1016/j.ssc.2004.07.055  doi: 10.1016/j.ssc.2004.07.055

    37. [37]

      Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. doi: 10.1038/nmat732  doi: 10.1038/nmat732

    38. [38]

      Wang, J.; Sun, X. Energy Environ. Sci. 2012, 5, 5163. doi: 10.1039/c1ee01263k  doi: 10.1039/c1ee01263k

    39. [39]

      Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, s97–98, 503. doi: 10.1016/S0378-7753(01)00727-3  doi: 10.1016/S0378-7753(01)00727-3

    40. [40]

      Chung, S. Y.; Chiang, Y. M. Electrochem. Solid St. 2003, 6, A278. doi: 10.1149/1.1621289  doi: 10.1149/1.1621289

    41. [41]

      Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. doi: 10.1038/nmat732  doi: 10.1038/nmat732

    42. [42]

      Meethong, N.; Kao, Y. H.; Speakman, S. A.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060. doi: 10.1002/adfm.200801617  doi: 10.1002/adfm.200801617

    43. [43]

      Zaghib, K.; Guerfi, A.; Hovington, P.; Vijh, A.; Trudeau, M.; Mauger, A.; Goodenough, J. B.; Julien, C. M. J. Power Sources 2013, 232, 357. doi: 10.1016/j.jpowsour.2012.12.095  doi: 10.1016/j.jpowsour.2012.12.095

    44. [44]

      Liu, J.; Kunz, M.; Chen, K.; Tamura, N.; Richardson, T. J. J. Phys. Chem. Lett. 2010, 1, 2120. doi: 10.1021/jz100634n  doi: 10.1021/jz100634n

    45. [45]

      Gaberscek, M.; Küzma, M.; Jamnik J., Phys. Chem. Chem. Phys. 2007, 9, 1815. doi: 10.1039/b618822b  doi: 10.1039/b618822b

    46. [46]

      Garcíamoreno, O.; Alvarezvega, M.; Garcíaalvarado, F.; Garcíajaca, J.; Gallardo Amores, M. L. S.; Amador, U. Chem. Mater. 2001, 13, 1570. doi: 10.1021/cm000596p  doi: 10.1021/cm000596p

    47. [47]

      Guo, H.; Song, X.; Zhuo, Z.; Hu, J.; Liu, T.; Duan, Y.; Zheng, J.; Chen, Z.; Yang, W.; Amine, K.; et al. Nano Lett. 2016, 16, 601. doi: 10.1021/acs.nanolett.5b04302  doi: 10.1021/acs.nanolett.5b04302

    48. [48]

      Zeng, G.; Caputo, R.; Carriazo, D.; Luo, L.; Niederberger, M. Chem. Mater. 2014, 44, 3399. doi: 10.1021/cm400995g  doi: 10.1021/cm400995g

    49. [49]

      Ashton, T. E.; Laveda, J. V.; MacLaren, D. A.; Baker, P. J.; Porch, A.; Jones, M. O.; Corr, S. A. J. Mater. Chem. A 2014, 2, 6238. doi: 10.1039/c4ta00543k  doi: 10.1039/c4ta00543k

    50. [50]

      Guo, H.; Ping, H.; Hu, J.; Song, X.; Zheng, J.; Pan, F. J. Mater. Chem. A 2017, 5, 14294. doi: 10.1039/c7ta03369a  doi: 10.1039/c7ta03369a

    51. [51]

      Hu, J.; Xiao, Y.; Tang, H.; Wang, H.; Wang, Z.; Liu, C.; Zeng, H.; Huang, Q.; Ren, Y.; Wang, C.; et al.NanoLett. 2017, 17, 4934. doi: 10.1021/acs.nanolett.7b01978  doi: 10.1021/acs.nanolett.7b01978

    52. [52]

      Ouyang, C. Y.; Shi, S. Q.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. J. Phys. Condens. Matter 2004, 16, 2265. doi: 10.1088/0953-8984/16/13/007  doi: 10.1088/0953-8984/16/13/007

    53. [53]

      Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108. doi: 10.1103/PhysRevB.68.195108  doi: 10.1103/PhysRevB.68.195108

    54. [54]

      Ni, J.; Zhou, H.; Chen, J.; Su, G.Acta Phys. -Chim. Sin. 2004, 20, 582.  doi: 10.3866/PKU.WHXB20040606

    55. [55]

      Meethong, N.; Kao, Y. H.; Carter, W. C.; Chiang, Y. M. Chem.Mater. 2009, 22, 1088. doi: 10.1021/cm902118m  doi: 10.1021/cm902118m

    56. [56]

      Meethong, N.; Huang, H. Y. S.; Speakman, S. A.; Carter, W. C.; Chiang, Y. M. Adv. Funct. Mater. 2007, 17, 1115. doi: 10.1002/adfm.200600938  doi: 10.1002/adfm.200600938

    57. [57]

      Axmann, P.; Stinner, C.; Wohlfahrtmehrens, M.; Mauger, A.; Gendron, F.; Julien, C. M. Chem. Mater. 2009, 21, 1636. doi: 10.1021/cm803408y  doi: 10.1021/cm803408y

    58. [58]

      Liu, H.; Cao, Q.; Fu, L. J.; Li, C.; Wu, Y. P.; Wu, H. Q. Electrochem. Commun. 2006, 8, 1553. doi: 10.1016/j.elecom.2006.07.014  doi: 10.1016/j.elecom.2006.07.014

    59. [59]

      Wang, Z.; Sun, S.; Xia, D.; Chu, W.; Zhang, S.; Wu, Z. J. Phys. Chem. C 2008, 112, 17450. doi: 10.1021/jp801497z  doi: 10.1021/jp801497z

    60. [60]

      Zhang, Z. ; Luo, S. ; Tang, Z. ; Lu, J. ; Yan, J. Prepn Process of Oxygen Place Doped Lithium Ferric Phosphate Powder. CN Patent 200510112562. 6, 2005-10-11.

    61. [61]

      Yang, Y. ; Zhang, Z. ; Zhu, C. LiFePO4 Cathode Material based on P Site Doped and Preparation Method Thereof. 200710008713, 2007-03-16.

    62. [62]

      Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085. doi: 10.1021/cm050999v  doi: 10.1021/cm050999v

    63. [63]

      Nishimura, S. I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Nat. Mater. 2008, 7, 707. doi: 10.1038/nmat2251  doi: 10.1038/nmat2251

    64. [64]

      Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid St. 2004, 7, A30. doi: 10.1149/1.1633511  doi: 10.1149/1.1633511

    65. [65]

      Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Science2014, 344, 1252817. doi: 10.1126/science.1252817  doi: 10.1126/science.1252817

    66. [66]

      Zhang, P.; Zhang, D.; Yuan, Q.; Ren, X.; Golden, T. D. Cheminform. 2011, 13, 1510. doi: 10.1016/j.solidstatesciences.2011.05.012  doi: 10.1016/j.solidstatesciences.2011.05.012

    67. [67]

      Wang, Y. Q.; Zhang, D. Y.; Chang, C. K.; Deng, L.; Huang, K. J. Mater. Chem. Phys. 2014, 148, 933. doi: 10.1016/j.matchemphys.2014.08.071  doi: 10.1016/j.matchemphys.2014.08.071

    68. [68]

      Chen, D. P.; Maljuk, A.; Lin, C. T. J. Cryst. Growth 2005, 284, 86. doi: 10.1016/j.jcrysgro.2005.06.024  doi: 10.1016/j.jcrysgro.2005.06.024

    69. [69]

      Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010, 10, 4123. doi: 10.1021/nl1023595  doi: 10.1021/nl1023595

    70. [70]

      Zou, Y.; Chen, S.; Yang, X.; Ma, N.; Xia, Y.; Yang, D.; Guo, S. Adv. Energy Mater. 2016, 6, 1601549. doi: 10.1002/aenm.201601549  doi: 10.1002/aenm.201601549

    71. [71]

      Whittingham, M. S. Chem. Rev. 2014, 114, 11414. doi: 10.1021/cr5003003  doi: 10.1021/cr5003003

    72. [72]

      Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97, 498. doi: 10.1016/S0378-7753(01)00633-4  doi: 10.1016/S0378-7753(01)00633-4

    73. [73]

      Saji, V. S.; Kim, Y. S.; Kim, T. H.; Cho, J.; Song, H. K. Phys. Chem. Chem. Phys. 2011, 13, 19226. doi: 10.1039/c1cp22818h  doi: 10.1039/c1cp22818h

    74. [74]

      Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, A1517. doi: 10.1149/1.1785012  doi: 10.1149/1.1785012

    75. [75]

      Delmas, C.; Maccario, M.; Croguennec, L.; Cras, F. L.; Weill, F. Nat. Mater. 2008, 7, 665. doi: 10.1038/nmat2230  doi: 10.1038/nmat2230

    76. [76]

      Hong, L.; Li, L.; Chen-Wiegart, Y. K.; Wang, J.; Xiang, K.; Gan, L.; Li, W.; Meng, F.; Wang, F.; Wang, J.; et al. Nat. Commun. 2017, 8, 1194. doi: 10.1038/s41467-017-01315-8  doi: 10.1038/s41467-017-01315-8

    77. [77]

      Lim, J.; Li, Y.; Alsem, D. H.; So, H.; Lee, S. C.; Bai, P.; Cogswell, D. A.; Liu, X.; Jin, N.; Yu, Y. S. Science2016, 353, 566. doi: 10.1126/science.aaf4914  doi: 10.1126/science.aaf4914

    78. [78]

      Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellahi, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridg, F. C.; Zhou, X.; et al. Sci. Adv. 2018, 4. doi: 10.1126/sciadv.aao2608  doi: 10.1126/sciadv.aao2608

    79. [79]

      Gaberscek, M.; Dominko, R.; Jamnik, J. Electrochem.Commun. 2007, 9, 2778. doi: 10.1016/j.elecom.2007.09.020  doi: 10.1016/j.elecom.2007.09.020

    80. [80]

      Jansen, A. N.; Dees, D. W.; Abraham, D. P.; Amine, K.; Henriksen, G. L. J. Power Sources 2007, 174, 373. doi: 10.1016/j.jpowsour.2007.06.235  doi: 10.1016/j.jpowsour.2007.06.235

    81. [81]

      Chang, Z. R.; Lv, H. J.; Tang, H. W.; Li, H. J.; Yuan, X. Z.; Wang, H. Electrochim. Acta 2009, 54, 4595. doi: 10.1016/j.electacta.2009.03.063  doi: 10.1016/j.electacta.2009.03.063

    82. [82]

      Doeff, M. M.; Wilcox, J. D.; Kostecki, R.; Lau, G. J. Power Sources 2006, 163, 180. doi: 10.1016/j.jpowsour.2005.11.075  doi: 10.1016/j.jpowsour.2005.11.075

    83. [83]

      Wang, Y.; Wang, Y.; Hosono, E.; Wang, K.; Zhou, H. Angew. Chem. -Int. Edit. 2008, 120, 7571. doi: 10.1002/anie.200802539  doi: 10.1002/anie.200802539

    84. [84]

      Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. Adv. Mater. 2009, 21, 2710. doi: 10.1002/adma.200802998  doi: 10.1002/adma.200802998

    85. [85]

      Nien, Y. H.; Carey, J. R.; Chen, J. S. J. Power Sources 2009, 193, 822. doi: 10.1016/j.jpowsour.2009.04.013  doi: 10.1016/j.jpowsour.2009.04.013

    86. [86]

      Yu, M., Zheng, W.; Cao, S.; Zhao, X. Acta Phys. -Chim. Sin. 2009, 25, 2186.  doi: 10.3866/PKU.WHXB20091113

    87. [87]

      Sun, Y. K.; Oh, S. M.; Park, H. K.; Scrosati, B. Adv. Mater. 2011, 23, 5050. doi: 10.1002/adma.201102497  doi: 10.1002/adma.201102497

    88. [88]

      Oh, S. M.; Myung, S. T.; Park, J. B.; Scrosati, B.; Amine, K.; Sun, Y. K. Angew. Chem. -Int. Edit. 2012, 51, 1853. doi: 10.1002/anie.201107394  doi: 10.1002/anie.201107394

    89. [89]

      Xu, G.; Liu, Z.; Zhang, C.; Cui, G.; Chen, L. J. Mater. Chem. A 2015, 3, 4092. doi: 10.1039/C4TA06264G  doi: 10.1039/C4TA06264G

    90. [90]

      Duan, Y.; Zhang, B.; Zheng, J.; Hu, J.; Wen, J.; Miller, D. J.; Yan, P.; Liu, T.; Guo, H.; Li, W.; Song, X.; et al. Nano Lett. 2017, 17, 6018. doi: 10.1021/acs.nanolett.7b02315  doi: 10.1021/acs.nanolett.7b02315

    91. [91]

      Lu, C.; Rooney, D. W.; Jiang, X.; Sun, W.; Wang, Z.; Wang, J.; Sun, K. J. Mater. Chem. A 2017, 5, 24636. doi: 10.1039/c7ta08688a  doi: 10.1039/c7ta08688a

    92. [92]

      Wang, B.; Kwak, B. S.; Sales, B. C.; Bates, J. B. J. Non-Cryst. Solids 1995, 183, 297. doi: 10.1016/0022-3093(94)00665-2  doi: 10.1016/0022-3093(94)00665-2

    93. [93]

      Tron, A.; Jo, Y. N.; Oh, S. H.; Park, Y. D.; Mun, J. ACS Appl. Mater. Inter. 2017, 9, 12391. doi: 10.1021/acsami.6b16675  doi: 10.1021/acsami.6b16675

    94. [94]

      Li, W.; Dahn, J. R.; Wainwright, D. S. Science 1994, 264, 1115. doi: 10.1126/science.264.5162.1115  doi: 10.1126/science.264.5162.1115

    95. [95]

      Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763  doi: 10.1038/nchem.763

    96. [96]

      Hou, Y.; Wang, X.; Zhu, Y.; Hu, C.; Chang, Z.; Wu, Y.; Holze, R. J. Mater. Chem. A 2013, 1, 14713. doi: 10.1039/c3ta13472e  doi: 10.1039/c3ta13472e

    97. [97]

      Ren, W.; Chen, H.; Qiao, R.; Lin, Y.; Pan, F. J.Mater. Chem. A 2017, 5, 22598. doi: 10.1039/c7ta07332a  doi: 10.1039/c7ta07332a

    98. [98]

      Hu, J.; Li, W.; Duan, Y.; Cui, S.; Song, X.; Liu, Y.; Zheng, J.; Lin, Y.; Pan, F. Adv. Energy Mater. 2016, 7, 1601894. doi: 10.1002/aenm.201601894  doi: 10.1002/aenm.201601894

    99. [99]

      Yup Song, K.; Su Jang, G.; Tao, J.; Ho Lee, J.; Ki Joo, S. J. Electrochem. Soc. 2016, 163, A2981. doi: 10.1149/2.0581614jes  doi: 10.1149/2.0581614jes

    100. [100]

      Liu, G.; Zheng, H.; Simens, A. S.; Minor, A. M.; Song, X.; Battaglia, V. S. J. Electrochem. Soc. 2007, 154, A1129. doi: 10.1149/1.2792293  doi: 10.1149/1.2792293

    101. [101]

      Ren, W.; Wang, K.; Yang, J.; Tan, R.; Hu, J.; Guo, H.; Duan, Y.; Zheng, J.; Lin, Y.; Pan, F. J. Power Sources 2016, 331, 232. doi: 10.1016/j.jpowsour.2016.09.049  doi: 10.1016/j.jpowsour.2016.09.049

    102. [102]

      Zheng, H.; Li, J.; Song, X.; Liu, G.; Battaglia, V. S. Electrochim. Acta 2012, 71, 258. doi: 10.1016/j.electacta.2012.03.161  doi: 10.1016/j.electacta.2012.03.161

    103. [103]

      Yu, D. Y. W.; Donoue, K.; Inoue, T.; Fujimoto, M.; Fujitani, S. J. Electrochem. Soc. 2006, 153, A835. doi: 10.1149/1.2179199  doi: 10.1149/1.2179199

    104. [104]

      Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D. J. Electrochem. Soc. 2009, 156, A133. doi: 10.1149/1.3046129  doi: 10.1149/1.3046129

    105. [105]

      Elango, R.; Demortière, A.; De Andrade, V.; Morcrette, M.; Seznec, V. Adv. Energy Mater.2018, 1703031. doi: 10.1002/aenm.201703031  doi: 10.1002/aenm.201703031

    106. [106]

      Guo, Z.; Chen, Z. J. Alloys Compd. 2016, 685, 705. doi: 10.1016/j.jallcom.2016.05.237  doi: 10.1016/j.jallcom.2016.05.237

    107. [107]

      Hu, J.; Jiang, Y.; Cui, S.; Duan, Y.; Liu, T.; Guo, H.; Lin, L.; Lin, Y.; Zheng, J.; Amine, K.; Pan, F. Adv. Energy Mater. 2016, 6, 1600856. doi: 10.1002/aenm.201600856  doi: 10.1002/aenm.201600856

    108. [108]

      Delannoy, P. E.; Riou, B.; Brousse, T.; Le Bideau, J.; Guyomard, D.; Lestriez, B. J. Power Sources 2015, 287, 261. doi: 10.1016/j.jpowsour.2015.04.067  doi: 10.1016/j.jpowsour.2015.04.067

    109. [109]

      Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. Adv. Mater. 2013, 25, 4539. doi: 10.1002/adma.201301036  doi: 10.1002/adma.201301036

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    14. [14]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    20. [20]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

Metrics
  • PDF Downloads(83)
  • Abstract views(1346)
  • HTML views(486)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return