Citation: ZHANG Zhongqiang, ZHANG Shuhua, LIU Zhixi, ZHANG Zhiguo, LI Yongfang, LI Changzhi, CHEN Hongzheng. A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 394-400. doi: 10.3866/PKU.WHXB201805091 shu

A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells

  • Corresponding author: LI Changzhi, czli@zju.edu.cn CHEN Hongzheng, hzchen@zju.edu.cn
  • Received Date: 10 April 2018
    Revised Date: 2 May 2018
    Accepted Date: 3 May 2018
    Available Online: 9 April 2018

    Fund Project: the National Natural Science Foundation of China 51473142the National Natural Science Foundation of China 61721005The project was supported by the National Natural Science Foundation of China (21734008, 61721005, 21674093, 51473142) and the Zhejiang Province Science and Technology Plan, China (2018C01047)the National Natural Science Foundation of China 21734008the Zhejiang Province Science and Technology Plan, China 2018C01047the National Natural Science Foundation of China 21674093

  • Non-fullerene electron acceptors have attracted enormous attention of the research community owing to their advantages of optoelectronic and chemical tunabilities for promoting high-performance polymer solar cells (PSCs). Among them, fused-ring electron acceptors (FREAs) are the most popular ones with the good structural planarity and rigidity, which successfully boost the power conversion efficiencies (PCEs) of PSCs to over 14%. In considering the cost-control of future scale-up applications, it is also worthwhile to explore novel structures that are easy to synthesize and still maintain the advantages of FREAs. In this work, we design and synthesize a new electron acceptor with an unfused backbone, 5, 5'-((2, 5-bis((2-hexyldecyl)oxy)-1, 4-phenylene)bis(thiophene-2-yl))bis(methanylylidene)) bis(3-oxo-2, 3-dihydro-1H-indene-2, 1-diylidene))dimal-ononitrile (ICTP), which contains two thiophenes and one alkoxy benzene as the core and 2-(3-oxo-2, 3-dihydroinden-1-ylidene) malononitrile (IC) as the terminal groups. The synthetic route to ICTP involves only three steps, with high yields. Density functional theory calculations indicate that the non-covalent interactions, O…H and O…S, help reinforce the space conformation between the central core and the terminals. ICTP shows broad and strong absorption in the long-wavelength range between 500 and 760 nm. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of ICTP were measured to be -5.56 and -3.84 eV by cyclic voltammetry. The suitable absorption and energy levels make ICTP a good acceptor candidate for medium bandgap polymer donors. The best devices based on PBDB-T:ICTP showed a PCE of 4.43%, with an open circuit voltage (VOC) of 0.97 V, a short circuit current density (JSC) of 8.29 mA∙cm-2, and a fill factor (FF) of 0.55, after adding 1% 1, 8-diiodooctane (DIO) as the solvent additive. Atomic force microscopy revealed that DIO could ameliorate the strong aggregation in the blended film and lead to a smoother film surface. The hole and electron mobilities of the optimized device were measured to be 9.64 and 2.03 × 10-5 cm2∙V-1∙s-1, respectively, by the space-charge-limited current method. The relatively low mobilities might be responsible for the moderate PCE. Further studies can be performed to enlarge the conjugation length by including more aromatic rings. This study provides a simple strategy to design non-fullerene acceptors and a valuable reference for the future development of PSCs.
  • 加载中
    1. [1]

      Lin, Y.; Zhan, X. Acc. Chem. Res. 2016, 49, 175. doi: 10.1021/acs.accounts.5b00363  doi: 10.1021/acs.accounts.5b00363

    2. [2]

      Li, S.; Zhang, Z.; Shi, M.; Li, C. Z.; Chen, H. Phys. Chem. Chem. Phys. 2017, 19, 3440. doi: 10.1039/c6cp07465k  doi: 10.1039/c6cp07465k

    3. [3]

      Li, S.; Liu, W.; Li, C. Z.; Shi, M.; Chen, H. Small 2017, 13, 1701120. doi: 10.1002/smll.201701120  doi: 10.1002/smll.201701120

    4. [4]

      Liu, W.; Li, S.; Huang, J.; Yang, S.; Chen, J.; Zuo, L.; Shi, M.; Zhan, X.; Li, C. Z.; Chen, H. Adv. Mater. 2016, 28, 9729. doi: 10.1002/adma.201603518  doi: 10.1002/adma.201603518

    5. [5]

      Lin, Y.; Zhan, X. Mater. Horiz. 2014, 1, 470. doi: 10.1039/c4mh00042k  doi: 10.1039/c4mh00042k

    6. [6]

      Li, S. X.; Liu, W. Q.; Shi, M. M.; Mai, J. Q.; Lau, T. K.; Wan, J. H.; Lu, X. H.; Li, C. Z.; Chen, H. Z. Energy Environ. Sci. 2016, 9, 604. doi: 10.1039/c5ee03481g  doi: 10.1039/c5ee03481g

    7. [7]

      Han, J.; Liang, Q.; Qu, Y.; Liu, J.; Han, Y. Acta Phys. -Chim. Sin. 2018, 34, 391.  doi: 10.3866/PKU.WHXB201709131

    8. [8]

      Wang, B.; Liu, W.; Li, H.; Mai, J.; Liu, S.; Lu, X.; Li, H.; Shi, M.; Li, C. Z.; Chen, H. J. Mater. Chem. A 2017, 5, 9396. doi: 10.1039/c7ta02582c  doi: 10.1039/c7ta02582c

    9. [9]

      Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Adv. Mater. 2018, 30, 1800868. doi: 10.1002/adma.201800868  doi: 10.1002/adma.201800868

    10. [10]

      Cui, Y.; Yao, H, ; Yang, C.; Zhang, S.; Hou, J. Acta Polym. Sin. 2018, No. 2, 223.  doi: 10.11777/j.issn1000-3304.2018.17297

    11. [11]

      Vohra, V.; Kawashima, K.; Kakara, T.; Koganezawa, T.; Osaka, I.; Takimiya, K.; Murata, H. Nat. Photon. 2015, 9, 403. doi: 10.1038/NPHOTON.2015.84  doi: 10.1038/NPHOTON.2015.84

    12. [12]

      Huang, J.; Zhang, X.; Zheng, D.; Yan, K.; Li, C. Z.; Yu, J. Solar RRL 2017, 1, 1600008. doi: 10.1002/solr.201600008  doi: 10.1002/solr.201600008

    13. [13]

      He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photon. 2012, 6, 593. doi: 10.1038/NPHOTON.2012.190  doi: 10.1038/NPHOTON.2012.190

    14. [14]

      Xu, J.; Fu, W.; Yang, S.; Liu, T.; Li, C. Z.; Chen, H. Acta Polym. Sin. 2018, No. 2, 164.  doi: 10.11777/j.issn1000-3304.2018.17251

    15. [15]

      Xu, J. Q.; Liu, W.; Liu, S. Y.; Ling, J.; Mai, J.; Lu, X.; Li, C. Z.; Jen, A. K. Y.; Chen, H. Sci. China Chem. 2017, 60, 561. doi: 10.1007/s11426-016-9003-9  doi: 10.1007/s11426-016-9003-9

    16. [16]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    17. [17]

      Lin, Y.; Zhang, Z. G.; Bai, H.; Wang, J.; Yao, Y.; Li, Y.; Zhu, D.; Zhan, X. Energy Environ. Sci. 2015, 8, 610. doi: 10.1039/c4ee03424d  doi: 10.1039/c4ee03424d

    18. [18]

      Yao, H.; Chen, Y.; Qin, Y.; Yu, R.; Cui, Y.; Yang, B.; Li, S.; Zhang, K.; Hou, J. Adv. Mater. 2016, 28, 8283. doi: 10.1002/adma.201602642  doi: 10.1002/adma.201602642

    19. [19]

      Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C. J.; Li, T.; Wang, J.; Zhu, J.; et al. J. Am. Chem. Soc. 2016, 138, 2973. doi: 10.1021/jacs.6b00853  doi: 10.1021/jacs.6b00853

    20. [20]

      Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110  doi: 10.1021/jacs.6b09110

    21. [21]

      Zhang, Z.; Liu, W.; Rehman, T.; Ju, H. X.; Mai, J.; Lu, X.; Shi, M.; Zhu, J.; Li, C. Z.; Chen, H. J. Mater. Chem. A 2017, 5, 9649. doi: 10.1039/c7ta01554b  doi: 10.1039/c7ta01554b

    22. [22]

      Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; et al. Nat. Energy 2016, 1, 16089. doi: 10.1038/nenergy.2016.89  doi: 10.1038/nenergy.2016.89

    23. [23]

      Zhang, H.; Li, S.; Xu, B.; Yao, H.; Yang, B.; Hou, J. J. Mater. Chem. A 2016, 4, 18043. doi: 10.1039/c6ta07672f  doi: 10.1039/c6ta07672f

    24. [24]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; et al. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155  doi: 10.1002/adma.201604155

    25. [25]

      Jiang, K.; Zhang, G.; Yang, G.; Zhang, J.; Li, Z.; Ma, T.; Hu, H.; Ma, W.; Ade, H.; Yan, H. Adv. Energy Mater. 2018, 8, 1701370. doi: 10.1002/aenm.201701370  doi: 10.1002/aenm.201701370

    26. [26]

      Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z. Adv. Mater. 2017, 29, 1703005. doi: 10.1002/adma.201703005  doi: 10.1002/adma.201703005

    27. [27]

      Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; Zhan, X. Adv. Mater. 2017, 29, 1704713. doi: 10.1002/adma.201704713  doi: 10.1002/adma.201704713

    28. [28]

      Zuo, L.; Yu, J.; Shi, X.; Lin, F.; Tang, W.; Jen, A. K. Adv. Mater. 2017, 29, 1702547. doi: 10.1002/adma.201702547  doi: 10.1002/adma.201702547

    29. [29]

      Cui, Y.; Yao, H.; Gao, B.; Qin, Y.; Zhang, S.; Yang, B.; He, C.; Xu, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7302. doi: 10.1021/jacs.7b01493  doi: 10.1021/jacs.7b01493

    30. [30]

      Liu, F.; Zhou, Z.; Zhang, C.; Zhang, J.; Hu, Q.; Vergote, T.; Liu, F.; Russell, T. P.; Zhu, X. Adv. Mater. 2017, 29, 1606574. doi: 10.1002/adma.201606574  doi: 10.1002/adma.201606574

    31. [31]

      Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; et al. J. Am. Chem. Soc. 2017, 139, 1336. doi: 10.1021/jacs.6b12755  doi: 10.1021/jacs.6b12755

    32. [32]

      Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. Adv. Mater. 2018, 30, 1705208. doi: 10.1002/adma.201705208  doi: 10.1002/adma.201705208

    33. [33]

      Zhang, Z.; Liu, Z.; Yan, K.; Li, H.; Liu, W.; Lu, X.; Li, H.; Chen, H.; Li, C. Z. Acta Polym. Sin. 2018, No. 2, 295.  doi: 10.11777/j.issn1000-3304.2018.17253

    34. [34]

      Ullah, F.; Qian, S.; Yang, W.; Shah, M. N.; Zhang, Z.; Chen, H.; Li, C. Z. Chinese Chem. Lett. 2017, 28, 2223. doi: 10.1016/j.cclet.2017.08.009  doi: 10.1016/j.cclet.2017.08.009

    35. [35]

      Shah, M. N.; Zhang, S.; Sun, Q.; Ullah, F.; Chen, H.; Li, C. Z. Tetrahedron Lett. 2017, 58, 2975. doi: 10.1016/j.tetlet.2017.06.056  doi: 10.1016/j.tetlet.2017.06.056

    36. [36]

      Nguyen, T. L.; Choi, H.; Ko, S. J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J. E.; Yun, M. H.; Shin, T. J.; Hwang, S.; et al. Energy Environ. Sci. 2014, 7, 3040. doi: 10.1039/c4ee01529k  doi: 10.1039/c4ee01529k

    37. [37]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; et al. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651  doi: 10.1038/ncomms13651

    38. [38]

      Bin, H.; Zhong, L.; Yang, Y.; Gao, L.; Huang, H.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Zhang, Z.; et al. Adv. Energy Mater. 2017, 7, 1700746. doi: 10.1002/aenm.201700746  doi: 10.1002/aenm.201700746

    39. [39]

      Yu, T.; Xu, X.; Zhang, G.; Wan, J.; Li, Y.; Peng, Q. Adv. Funct. Mater. 2017, 29, 1701491. doi: 10.1002/adfm.201701491  doi: 10.1002/adfm.201701491

    40. [40]

      Fan, Q.; Su, W.; Meng, X.; Guo, X.; Li, G.; Ma, W.; Zhang, M.; Li, Y. Solar RRL 2017, 1, 1700020. doi: 10.1002/solr.201700020  doi: 10.1002/solr.201700020

    41. [41]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 4657. doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    42. [42]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    43. [43]

      Elumalai, N. K.; Uddin, A. Energy Environ. Sci. 2016, 9, 391. doi: 10.1039/c5ee02871j  doi: 10.1039/c5ee02871j

  • 加载中
    1. [1]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    2. [2]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    3. [3]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    4. [4]

      Ling YangMin RenJie WangLiming HeShanshan WuShuai YangWei ZhaoHao ChengXiaoming ZhouMaling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822

    5. [5]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    6. [6]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    7. [7]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    8. [8]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    9. [9]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    10. [10]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    11. [11]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    12. [12]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    13. [13]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    14. [14]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    15. [15]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    16. [16]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    17. [17]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    18. [18]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    19. [19]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    20. [20]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

Metrics
  • PDF Downloads(41)
  • Abstract views(884)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return