Citation: WANG Qin, XUE Minmin, ZHANG Zhuhua. Chemical Synthesis of Borophene: Progress and Prospective[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 565-571. doi: 10.3866/PKU.WHXB201805080 shu

Chemical Synthesis of Borophene: Progress and Prospective

  • Corresponding author: ZHANG Zhuhua, chuwazhang@nuaa.edu.cn
  • Received Date: 28 May 2018
    Revised Date: 30 June 2018
    Accepted Date: 1 July 2018
    Available Online: 6 June 2018

    Fund Project: The project was supported by the Fundamental Research Funds for the Central Universities, China NE2018002The project was supported by the Fundamental Research Funds for the Central Universities, China (NE2018002)

  • Borophene, a boron analogue of graphene, exhibits a rich variety of chemical and physical properties. Here, we provide an intensive overview of recent progress in theoretical modeling and experimental synthesis of borophene. In particular, we analyze the influence of substrate, growth temperature, and precursor on the selectivity of boron nucleation. While three-dimensional (3D) bulk boron is more stable than a two-dimensional (2D) boron sheet, the nucleation barrier determined by the growth process controls the formation of the material and it depends on the specific growth environment. Theoretical studies have shown that a metal substrate can play an important role in stabilizing 2D boron clusters over their 3D form, resulting in the kinetically favored growth of 2D boron on the substrate even though the 2D boron clusters will be overwhelmingly less stable than the 3D form with increasing cluster size. Ag and Cu substrates have proven to be particularly suitable for achieving this preference. Guided by theoretical works and perhaps original insights, experimentalists from two independent groups have successfully synthesized 2D boron sheets on silver substrates by depositing ultra-high purity boron onto a clean Ag (111) surface under high vacuum conditions. Moreover, the borophene samples were found to exhibit the same atomic structure previously predicted to be preferred on this substrate. Besides the substrate, the growth temperature is also key to the final product. When the temperature is too low, boron growth cannot overcome the nucleation barrier of the 2D structure. As a result, boron clusters or amorphous boron structures are likely to be formed. In contrast, an excessively high growth temperature will steer the growth to overcome the nucleation barrier of 3D boron, possibly yielding boron nanofilms with finite thickness. Therefore, the growth temperature needs to be carefully controlled, so that the free energy of boron growth will be located between the nucleation barriers of the 3D and 2D forms. Some impurity elements found in synthetic source materials, such as hydrogen and oxygen, can also impact boron nucleation. The existence of these elements may alter the competition between 2D and 3D structures during the nucleation process. More importantly, hydrogen and oxygen can passivate the dangling bonds on the surface of a 3D boron structure, lowering its surface energy, and therefore, impairing the nucleation of 2D boron structures. At present, molecular beam epitaxy (MBE) is the only method with which borophene has been successfully synthesized. Yet this method is very expensive, suffers from low yield, and is constrained to small sample sizes. Thus, exploring the growth of borophene via chemical vapor deposition (CVD) on different substrates is critically important for realizing the great potential of borophene in various applications. By discussing possible growth conditions and atomistic mechanisms of borophene nucleation as well as theoretical methods for modeling and simulations, we suggest prospects for chemical vapor deposition growth of borophene on selected substrates. This work aims to offer useful guidance for chemical synthesis of large-area, high-quality borophenes and promote their practical applications.
  • 加载中
    1. [1]

      Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Nat. Rev. Chem. 2017, 1, 0014. doi: 10.1038/s41570-016-0014  doi: 10.1038/s41570-016-0014

    2. [2]

      Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Nat. Mater. 2017, 16, 163. doi: 10.1038/NMAT4802  doi: 10.1038/NMAT4802

    3. [3]

      Oganov, A. R.; Solozhenko, V. L. J. Superhard Mater. 2009, 31, 285. doi: 10.3103/S1063457609050013  doi: 10.3103/S1063457609050013

    4. [4]

      Huang, W.; Sergeeva, A. P.; Zhai, H. J.; Averkiev, B. B.; Wang, L. S.; Boldyrev, A. I. Nat. Chem. 2010, 2, 202. doi: 10.1038/NCHEM.534  doi: 10.1038/NCHEM.534

    5. [5]

      Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Acc. Chem. Res. 2014, 2, 1349. doi: 10.1021/ar400310g  doi: 10.1021/ar400310g

    6. [6]

      Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B.; et al. Nat. Chem. 2014, 6, 727. doi: 10.1038/NCHEM.1999  doi: 10.1038/NCHEM.1999

    7. [7]

      Ciuparu, D.; Klie, R. F.; Zhu, Y. M.; Pfefferle, L. J. Phys. Chem. B 2004, 108, 3967. doi: 10.1021/jp049301b  doi: 10.1021/jp049301b

    8. [8]

      Liu, F.; Shen, C. M.; Su, Z. J.; Ding, X. L.; Deng, S. Z.; Chen, J.; Xu, N. S.; Gao, H. J. J. Mater. Chem. 2010, 20, 2197. doi: 10.1039/b919260c  doi: 10.1039/b919260c

    9. [9]

      Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Angew. Chem. Int. Ed. 2015, 54, 15473. doi: 10.1002/anie.201509285  doi: 10.1002/anie.201509285

    10. [10]

      Sun, X.; Liu, X. F.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X. C.; Yu, M. L.; Li, J. D.; Tai, G. A.; et al. Adv. Funct. Mater. 2017, 27, 1603300. doi: 10.1002/adfm.201603300  doi: 10.1002/adfm.201603300

    11. [11]

      Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R.; et al. Science 2015, 350, 1513. doi: 10.1126/science.aad1080  doi: 10.1126/science.aad1080

    12. [12]

      Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Nat. Chem. 2016, 8, 563. doi: 10.1038/NCHEM.2491  doi: 10.1038/NCHEM.2491

    13. [13]

      Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Chem. Soc. Rev. 2017, 46, 6746. doi: 10.1039/c7cs00261k  doi: 10.1039/c7cs00261k

    14. [14]

      Feng, B. J.; Sugino, O.; Liu, R. Y.; Zhang, J.; Yukawa, R.; Kawamura, M.; Iimori, T.; Kim, H.; Hasegawa, Y.; Li, H.; et al. Phys. Rev. Lett. 2017, 118, 096401. doi: 10.1103/PhysRevLett.118.096401  doi: 10.1103/PhysRevLett.118.096401

    15. [15]

      Huang, Y. F.; Shirodkar, S. N.; Yakobson, B. I. J. Am. Chem. Soc. 2017, 139, 17181. doi: 10.1021/jacs.7b10329  doi: 10.1021/jacs.7b10329

    16. [16]

      Zhang, Z. H.; Yang, Y.; Penev, E. S.; Yakobson, B. I. Adv. Funct. Mater. 2017, 27, 1605059. doi: 10.1002/adfm.201605059  doi: 10.1002/adfm.201605059

    17. [17]

      Boustani, I.; Quandt, A.; Hernandez, E.; Rubio, A. J. Chem. Phys. 1999, 110, 3176. doi: 10.1063/1.477976  doi: 10.1063/1.477976

    18. [18]

      Boustani, I. Phys. Rev. B 1997, 55, 16426. doi: 10.1103/PhysRevB.55.16426  doi: 10.1103/PhysRevB.55.16426

    19. [19]

      Yang, X. B.; Ding, Y.; Ni, J. Phys. Rev. B 2008, 77, 041402. doi: 10.1103/PhysRevB.77.041402  doi: 10.1103/PhysRevB.77.041402

    20. [20]

      Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 99, 115501. doi: 10.1103/PhysRevLett.99.115501  doi: 10.1103/PhysRevLett.99.115501

    21. [21]

      Szwacki, N. G.; Sadrzadeh, A.; Yakobson, B. I. Phys. Rev. Lett. 2007, 98, 166804. doi: 10.1103/PhysRevLett.98.166804  doi: 10.1103/PhysRevLett.98.166804

    22. [22]

      Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Nano Lett. 2012, 12, 2441. doi: 10.1021/nl3004754  doi: 10.1021/nl3004754

    23. [23]

      Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C. ACS Nano 2012, 6, 7443. doi: 10.1021/nn302696v  doi: 10.1021/nn302696v

    24. [24]

      Lu, H.; Mu, Y.; Bai, H.; Chen, Q.; Li, S. J. Chem. Phys. 2013, 138, 024701. doi: 10.1063/1.4774082  doi: 10.1063/1.4774082

    25. [25]

      Yu, X.; Li, L.; Xu, X.; Tang, C. J. Phys. Chem. C 2012, 116, 20075. doi: 10.1021/jp305545z  doi: 10.1021/jp305545z

    26. [26]

      Xu, S.; Li, X.; Zhao, Y.; Liao, J.; Xu, W.; Yang, X.; Xu, H. J. Am. Chem. Soc. 2017, 139, 17233. doi: 10.1021/jacs.7b08680  doi: 10.1021/jacs.7b08680

    27. [27]

      Zhou, X. F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H. T. Phys. Rev. Lett. 2014, 112, 085502. doi: 10.1103/PhysRevLett.112.085502  doi: 10.1103/PhysRevLett.112.085502

    28. [28]

      Ma, F.; Jiao, Y.; Gao, G.; Gu, Y.; Bilic, A.; Chen, Z.; Du, A. Nano Lett. 2016, 16, 3022. doi: 10.1021/acs.nanolett.5b05292  doi: 10.1021/acs.nanolett.5b05292

    29. [29]

      Liu, Y.; Penev, E. S.; Yakobson, B. I. Angew. Chem. Int. Ed. 2013, 52, 3156. doi: 10.1002/anie.201207972  doi: 10.1002/anie.201207972

    30. [30]

      Liu, H. S.; Gao, J. F.; Zhao, J. J. Sci. Rep. 2013, 3, 3238. doi: 10.1038/srep03238  doi: 10.1038/srep03238

    31. [31]

      Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Angew. Chem. Int. Ed. 2015, 54, 13022. doi: 10.1002/anie.201505425  doi: 10.1002/anie.201505425

    32. [32]

      Meng, X. M.; Hu, J. Q.; Jiang, Y.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2003, 370, 825. doi: 10.1016/S0009-2614(03)00202-1  doi: 10.1016/S0009-2614(03)00202-1

    33. [33]

      Cao, L. M.; Zhang, Z.; Sun, L. L.; Gao, C. X.; He, M.; Wang, Y. Q.; Li, Y. C.; Zhang, X. Y.; Li, G.; Zhang, J.; et al. Adv. Mater. 2001, 13, 1701. doi: 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q  doi: 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q

    34. [34]

      Cao, L. M.; Hahn, K.; Wang, Y. Q.; Scheu, C.; Zhang, Z.; Gao, C. X.; Li, Y. C.; Zhang, X. Y.; Sun, L. L.; Wang, W. K.; et al. Adv. Mater. 2002, 14, 1294. doi: 10.1002/1521-4095(20020916)14:18<1294::AID-ADMA1294>3.0.CO;2-#  doi: 10.1002/1521-4095(20020916)14:18<1294::AID-ADMA1294>3.0.CO;2-#

    35. [35]

      Ni, H.; Li, X. D. J. Nano Res. 2008, 1, 10. doi: 10.4028/www.scientific.net/JNanoR.1.10  doi: 10.4028/www.scientific.net/JNanoR.1.10

    36. [36]

      Xu, J. Q.; Chang, Y. Y.; Gan, L.; Ma, Y.; Zhai, T. Y. Adv. Sci. 2015, 2, 1500023. doi: 10.1002/advs.201500023  doi: 10.1002/advs.201500023

    37. [37]

      Tian, J. F.; Xu, Z. C.; Shen, C. M.; Liu, F.; Xu, N. S.; Gao, H. J. Nanoscale 2010, 2, 1375. doi: 10.1039/c0nr00051e  doi: 10.1039/c0nr00051e

    38. [38]

      Yang, J. K.; Yang, Y.; Waltermire, S. W.; Wu, X. X.; Zhang, H. T.; Gutu, T.; Jiang, Y. F.; Chen, Y. F.; Zinn, A. A.; Prasher, R.; et al. Nat. Nanotechnol. 2012, 7, 91. doi: 10.1038/NNANO.2011.216  doi: 10.1038/NNANO.2011.216

    39. [39]

      Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Phys. Rev. Mater. 2017, 1, 021001. doi: 10.1103/PhysRevMaterials.1.021001  doi: 10.1103/PhysRevMaterials.1.021001

    40. [40]

      Zhang, Z. H.; Mannix, A. J.; Hu, Z. L.; Kiraly, B.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Nano Lett. 2016, 16, 6622. doi: 10.1021/acs.nanolett.6b03349  doi: 10.1021/acs.nanolett.6b03349

    41. [41]

      Shirodkar, S. N.; Penev, E. S.; Yakobson B. I. Sci. Bull. 2018, 63, 270. doi: 10.1016/j.scib.2018.02.019  doi: 10.1016/j.scib.2018.02.019

    42. [42]

      Li, W. B.; Kong, L. J.; Chen, C. Y.; Gou, J.; Sheng, S. X.; Zhang, W. F.; Li, H.; Chen, L.; Cheng, P.; Wu, K. H. Sci. Bull. 2018, 63, 282. doi: 10.1016/j.scib.2018.02.006  doi: 10.1016/j.scib.2018.02.006

    43. [43]

      Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121  doi: 10.1038/nchem.121

    44. [44]

      Zhang, Z.; Penev, E. S.; Yakobson, B. I. Nat. Chem. 2016, 8, 525. doi: 10.1038/nchem.2521  doi: 10.1038/nchem.2521

    45. [45]

      Xu, S. G.; Zhao, Y. J.; Liao, J. H.; Yang, X. B.; Xu, H. Nano Res. 2016, 9, 2616. doi: 10.1007/s12274-016-1148-0  doi: 10.1007/s12274-016-1148-0

    46. [46]

      Tibbetts, G. G. J. Cryst. Growth 1984, 66, 632. doi: 10.1016/0022-0248(84)90163-5  doi: 10.1016/0022-0248(84)90163-5

    47. [47]

      Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Proc. Nat. Acad. Sci. USA 2009, 106, 2506. doi: 10.1073/pnas.0811946106  doi: 10.1073/pnas.0811946106

    48. [48]

      Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Proc. Natl. Acad. Sci. USA 2012, 109, 15136. doi: 10.1073/pnas.1207519109  doi: 10.1073/pnas.1207519109

    49. [49]

      Zhang, Z. H.; Liu, Y. Y.; Yang, Y.; Yakobson, B. I. Nano Lett. 2016, 16, 1398. doi: 10.1021/acs.nanolett.5b04874  doi: 10.1021/acs.nanolett.5b04874

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    13. [13]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    14. [14]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(18)
  • Abstract views(1048)
  • HTML views(313)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return