Citation: FENG Yingjie, WANG Jinping, LIU Lili, WANG Xidong. Self-Conversion from ZnO Nanorod Arrays to Tubular Structures and Their Applications in Nanoencapsulated Phase-Change Materials[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 644-650. doi: 10.3866/PKU.WHXB201805068 shu

Self-Conversion from ZnO Nanorod Arrays to Tubular Structures and Their Applications in Nanoencapsulated Phase-Change Materials

  • Corresponding author: WANG Xidong, xidong@pku.edu.cn
  • Received Date: 24 May 2018
    Revised Date: 2 July 2018
    Accepted Date: 4 July 2018
    Available Online: 9 June 2018

    Fund Project: The project was supported by the Common Development Fund of Beijing, China and the National Natural Science Foundation of China 北京市公共发展基金及国家自然科学基金The project was supported by the Common Development Fund of Beijing, China and the National Natural Science Foundation of China (51472006)

  • In the emerging field of nanoscience, tubular structures have been attracting remarkable interest due to their well-defined geometry, high specific area, and exceptional physical and chemical properties. Among them, oriented ZnO tubular arrays are regarded as promising candidates for various applications such as optoelectronics, solar cells, sensors, field emission, piezoelectrics, and catalysis. Although template-directed and selective dissolution synthesizing strategies are commonly used to prepare ZnO nanotubes, repeatability and large scale preparation are still challenging. In this study, ZnO nanotube arrays were controllably prepared by tuning the hydrothermal parameters, without the use of any additives. The mechanism underlying the self-conversion of ZnO nanorods to nanotubes was comprehensively studied based on the surface energy theory. It has been proved that the metastable top surface of the ZnO nanorods dissolves preferentially to reach a stable state during the hydrothermal growth. The specific surface energy of different crystal faces of ZnO nanorods was calculated using molecular dynamics simulation. The top surface of the ZnO nanorod, the Zn-terminated [0001] face, demonstrated much higher surface free energy than did the lateral faces, which indicated that the self-dissolution of top face (002) is energetically favorable. The self-conversion behavior of ZnO nanorod arrays with different diameters was specifically investigated by adjusting the initial precursor concentration, density of the crystal seed layers, and growth time. The dissolution-crystallization equilibrium concentration, determined by crystal surface energy, was found to be a key factor for the formation of the tubular structure. Notably, the critical equilibrium conditions for the self-conversion of ZnO nanorods to nanotubes, including zinc ion concentration and pH, have been identified by studying parameters corresponding to the dissolution-crystallization equilibrium for the metastable top surface of the ZnO nanorods. The preparation of the ZnO nanotube arrays was successfully accelerated and simplified via two-step procedure: (1) preparation of ZnO nanorod arrays and (2) self-conversion of ZnO nanorods to nanotubes. The preparation method based on the self-conversion mechanism from rods to tubes for polar oxides is simpler and more easily controllable as compared to the reported methods involving variety of additives. Because of the advantages of adaptability to a wide range of substrates, excellent conducting properties, and filling ability, the prepared ZnO nanotube array films were used in encapsulating phase-change materials. The encapsulated phase-change material exhibited excellent heat storage/release properties and heat conductivities. This indicates the potential application of precision devices for temperature control.
  • 加载中
    1. [1]

      (a) Greyson, E. C.; Babayan, Y.; Odom, T. W. Adv. Mater. 2004, 16, 1348. doi: 10.1002/adma.200400765
      (b) Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. Nano Lett. 2005, 5, 1231. doi: 10.1021/nl050788p

    2. [2]

      Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Adv. Mater. 2005, 17, 2477. doi: 10.1002/adma.200500726  doi: 10.1002/adma.200500726

    3. [3]

      s(a) Pan, Z. X.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. doi: 10.1126/science.1058120
      (b) Wen, X. G.; Fang, Y. P.; Pang, Q.; Yang, C. L.; Wang, J. N.; Ge, W. K.; Wong, K. S.; Yang, S. H. J. Phys. Chem. B 2005, 109, 15303. doi: 10.1021/jp052466f

    4. [4]

      (a) Gao, P. X.; Wang, Z. L. J. Am. Chem. Soc. 2003, 125, 11299. doi: 10.1021/ja035569p
      (b) Li, G. R.; Lu, X. H.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Cryst. Growth Des. 2008, 8, 1276. doi: 10.1021/cg7009995

    5. [5]

      (a) Konenkamp, R.; Word, R. C.; Godinez, M. Nano Lett. 2005, 5, 2005. doi: 10.1021/nl051501r
      (b) Flemban, T. H.; Haque, M. A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I. S. ACS Appl. Mater. Interfaces 2017, 9, 37120. doi: 10.1021/acsami.7b09645

    6. [6]

      (a) Valls, I. G.; Cantu, M. L. Energy Environ. Sci. 2009, 2, 19. doi: 10.1002/adma.200400765
      (b) Martinson, A. B.; Elam, J. W.; Hupp, J. T.; Pelin, M. J. Nano Lett. 2007, 7, 2183. doi: 10.1021/nl070160+

    7. [7]

      (a) Yang, K.; She, G. W.; Wang, H.; Ou, X. M.; Zhang, X. H.; Lee, C. S.; Lee, S. T. J. Phys. Chem. C 2009, 113, 20169. doi: 10.1021/jp901894j
      (b) Huang, Y. C.; Chang, S. Y.; Jehng, J. M. J. Phys. Chem. C 2017, 121, 19063. doi: 10.1021/acs.jpcc.7b05806

    8. [8]

      (a) Ye, C.; Bando, Y.; Fang, X.; Shen, G.; Goldberg, D. J. Phys. Chem. C 2007, 111, 12673. doi: 10.1021/jp073928n
      (b) Wang, X.; Zhou, J.; Lao, C.; Song, J.; Xu, N.; Wang, Z. L. Adv. Mater. 2007, 19, 1627. doi: 10.1002/adma.200602467

    9. [9]

      (a) Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Science 2007, 316, 102. doi: 10.1126/science.1139366
      (b) Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen, L. J.; Wang, Z. L. Nano Lett. 2009, 9, 1223. doi: 10.1021/nl900115y

    10. [10]

      Chouhan, N.; Yeh, C. L.; Hu, S. F.; Liu, R. S.; Chang, W. S.; Chene, K. H. Chem. Comm. 2011, 47, 3493. doi: 10.1039/C0CC05548D  doi: 10.1039/C0CC05548D

    11. [11]

      Zhao, X. F.; Chen, H.; Wu, H.; Wang, R.; Cui, Y.; Fu, Q.; Yang, F.; Bao, X. H. Acta Phys. -Chim. Sin. 2018, 34, 1373.  doi: 10.3866/PKU.WHXB201804131

    12. [12]

      Elias, J.; Tena-Zaera, R.; Wang, Y. S.; Lévy-Clément, C. Chem. Mater. 2008, 20, 6633. doi: 10.1021/cm801131t  doi: 10.1021/cm801131t

    13. [13]

      Xu, L. F.; Liao, Q.; Zhang, J. P.; Ai, X. C.; Xu, D. S. J. Phys. Chem. C 2007, 111, 4549. doi: 10.1021/jp068485m  doi: 10.1021/jp068485m

    14. [14]

      Li, G. R.; Lu, X. H.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Cryst. Growth Des. 2008, 8, 1276. doi: 10.1021/cg7009995  doi: 10.1021/cg7009995

    15. [15]

      Fujimura, N.; Nishihara, T.; Goto, S.; Xu, J. F.; Ito, T. J. Cryst. Growth 1993, 130, 269. doi: 10.1016/0022-0248(93)90861-P  doi: 10.1016/0022-0248(93)90861-P

    16. [16]

      Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Phys. Rev. Lett. 2003, 91, 185502. doi: 10.1103/PhysRevLett.91.185502  doi: 10.1103/PhysRevLett.91.185502

    17. [17]

      Yu, H. D.; Zhang, Z. P.; Han, M. Y.; Hao, X. T.; Zhu, F. R. J. Am. Chem. Soc. 2005, 127, 2378. doi: 10.1021/ja043121y  doi: 10.1021/ja043121y

    18. [18]

      Zhang, B. P.; Binh, N. T.; Wakatsuki, K.; Segawa, Y.; Yamada, Y.; Usami, N.; Kawasaki, M.; Koinuma, H. J. Phys. Chem. B 2004, 108, 10899. doi: 10.1021/jp048602i  doi: 10.1021/jp048602i

    19. [19]

      Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Chem. Mater. 2001, 13, 4395. doi: 10.1021/cm011160s  doi: 10.1021/cm011160s

    20. [20]

      Matijević, E. Langmuir 1994, 10, 8. doi: 10.1021/la00013a003  doi: 10.1021/la00013a003

    21. [21]

      Vayssieres, L. Adv. Mater. 2003, 15, 464. doi: 10.1002/adma.200390108  doi: 10.1002/adma.200390108

    22. [22]

      Pardeshi, S. K.; Patil, A. B. J. Hazard. Mater. 2009, 163, 403. doi: 10.1016/j.jhazmat.2008.06.111  doi: 10.1016/j.jhazmat.2008.06.111

    23. [23]

      Chu, D. W.; Masuda, Y.; Ohji, T.; Kato, K. Langmuir 2010, 26, 2811. doi: 10.1021/la902866a  doi: 10.1021/la902866a

    24. [24]

      Mondal, S. Appl. Therm. Eng. 2008, 28, 1536. doi: 10.1016/j.applthermaleng.2007.08.009  doi: 10.1016/j.applthermaleng.2007.08.009

    25. [25]

      Wu, S. Y.; Zhu, D. S.; Zhang, X. R.; Huang, J. Energy Fuels 2010, 24, 1894. doi: 10.1021/ef9013967  doi: 10.1021/ef9013967

  • 加载中
    1. [1]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    2. [2]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    3. [3]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    4. [4]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    5. [5]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    6. [6]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    10. [10]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    14. [14]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    15. [15]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    16. [16]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    20. [20]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

Metrics
  • PDF Downloads(16)
  • Abstract views(374)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return