Citation: LIAN Mengshui, WANG Yali, ZHAO Mingquan, LI Qianqian, WENG Weizheng, XIA Wensheng, WAN Huilin. Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 607-615. doi: 10.3866/PKU.WHXB201805054 shu

Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification

  • Corresponding author: XIA Wensheng, wsxia@xmu.edu.cn WAN Huilin, hlwan@xmu.edu.cn
  • Received Date: 20 May 2018
    Revised Date: 12 June 2018
    Accepted Date: 20 June 2018
    Available Online: 11 June 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21373169), and PCSIRT (IRT1036)the National Natural Science Foundation of China 21373169PCSIRT IRT1036

  • With the discovery and large-scale exploitation of natural gas resources such as shale gas and combustible ice, which are mainly composed of methane, their effective utilization has become a national strategic interest. Partial oxidation of methane (POM) to synthesis gas is one of the important methods for the utilization of natural gas and shale gas resources. The commonly used Ni/SiO2 catalyst for POM easily deactivates due to carbon deposition on the surface. To solve this problem, a urea precipitation method was employed in this work to prepare Ni-based catalysts modified with different amounts of tungsten (at W/Ni molar ratios of 0, 0.01, 0.03, 0.05, 0.07, and 0.10), and the catalyst stability in POM as well as the role of W were investigated. From characterizations such as X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS), we obtained the following results. The amount of W added to the Ni-based catalysts has a significant influence on their catalytic performances in POM and their physicochemical properties. The particle size of Ni in the catalysts decreases with W addition, and the Ni particle distribution on the support surfaces becomes more uniformed; however, the catalytic activity for POM is not significantly influenced. However, W-modified Ni-based catalysts show an increasing improvement in their stability in POM with increasing W/Ni molar ratio, with an optimum at the W/Ni molar ratio of 0.07; at the W/Ni molar ratio of 0.10, they exhibit a rapid deactivation in POM in a short time. Although interactions between Ni and SiO2 in the as-prepared catalysts are weak, the presence of adequate tungsten (W/Ni molar ratio of 0.05 and above) in the Ni-based catalysts can reduce the Ni particle size to some extent, and lead to the formation of strong interactions between Ni and W, which leads to an improvement in the dispersion of Ni on the support surface and imparts resistance for Ni particle growth in the POM reaction. The increased interaction between Ni and W changes the chemical state or oxygen affinity of Ni particles on the catalyst surfaces, and some of the partially oxidized Ni species (Niδ+) on the catalyst surfaces coexist with reduced Ni species (Ni0) during POM. Using an adequate amount of W-modified Ni catalysts results in almost no carbon deposition on the surfaces during POM, but using only a moderate amount results in good catalytic behavior and stability in POM. This finding suggests that the presence of W can not only enhance the anti-coking ability of the Ni-based catalysts and sustain their good stability in POM if the W content is low (i.e., W/Ni molar ratio of 0.07 and below), but also lead to the deactivation of W-modified catalysts in POM if the W content is high (i.e., W/Ni molar ratio of 0.10 and above), due to high oxygen affinity or the presence of more Ni species in oxidized form. In addition, α-WC (tungsten carbide) was identified using XRD to be formed on the surface of the moderate-amount W-modified Ni catalysts after POM, and it could inhibit or eliminate carbon deposition on the Ni-based catalyst surfaces. The catalytic performance evaluation of the catalysts in POM under a long time period confirmed that α-WC is stable.
  • 加载中
    1. [1]

      Chai, R. J.; Zhang, Z. Q.; Chen, P. J.; Zhao, G. F.; Liu, Y.; Lu, Y. Microporous Mesoporous Mater. 2017, 253, 123. doi: 10.1016/j.micromeso.2017.07.005  doi: 10.1016/j.micromeso.2017.07.005

    2. [2]

      Luo, Z.; Kriz, D. A.; Miao, R.; Kuo, C. H.; Zhong, W.; Guild, C.; He, J. K.; Willis, B.; Dang, Y. L.; Suib, S. L.; et al. Appl. Catal. A 2018, 554, 54. doi: 10.1016/j.apcata.2018.01.020  doi: 10.1016/j.apcata.2018.01.020

    3. [3]

      Wang, F.; Li, W. Z.; Lin, J. D.; Chen, Z. Q.; Wang, Y. Appl. Catal. B 2018, 231, 292. doi: 10.1016/j.apcatb.2018.03.018  doi: 10.1016/j.apcatb.2018.03.018

    4. [4]

      Guo, S. S.; Wang, J. W.; Ding, C. M.; Duan, Q. L.; Ma, Q.; Zhang, K.; Liu, P. Int. J. Hydrog. Energy 2018, 43, 6603. doi: 10.1016/j.ijhydene.2018.02.035  doi: 10.1016/j.ijhydene.2018.02.035

    5. [5]

      Yang, M. H.; Wu, H. H.; Wu, H. Y.; Huang, C. J.; Weng, W. Z.; Chen, M. S.; Wan, H. L. RSC Adv. 2016, 6, 81237. doi: 10.1039/c6ra15358e  doi: 10.1039/c6ra15358e

    6. [6]

      Kim, D.; Park, G. A.; Lim, J.; Ha, K. S. Chem. Eng. J. 2017, 316, 1011. doi: 10.1016/j.cej.2017.02.014  doi: 10.1016/j.cej.2017.02.014

    7. [7]

      Rodemerck, U.; Schneider, M.; Linke, D. Catal. Commun. 2017, 102, 98. doi: 10.1016/j.catcom.2017.08.031  doi: 10.1016/j.catcom.2017.08.031

    8. [8]

      Li, L.; He, S. C.; Song, Y. Y.; Zhao, J.; Ji, W. J.; Au, C. T. J. Catal. 2012, 288, 54. doi: 10.1016/j.jcat.2012.01.004  doi: 10.1016/j.jcat.2012.01.004

    9. [9]

      Wang, F. G.; Han, B. L.; Zhang, L. J.; Xu, L. L.; Yu, H.; Shi, W. D. Appl. Catal. B 2018, 235, 26. doi: 10.1016/j.apcatb.2018.04.069  doi: 10.1016/j.apcatb.2018.04.069

    10. [10]

      Ashok, J.; Bian, Z.; Wang, Z.; Kawi, S. Catal. Sci. Technol. 2018, 8, 1730. doi: 10.1039/c7cy02475d  doi: 10.1039/c7cy02475d

    11. [11]

      Li, Q.; Hou, Y. H.; Dong, L. Y.; Huang, M. X.; Weng, W. Z.; Xia, W. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2013, 29, 2245.  doi: 10.3866/PKU.WHXB201308201

    12. [12]

      Wu, H. J.; Pantaleo, G.; La Parola, V.; Venezia, A. M.; Collard, X.; Aprile, C.; Liotta, L. F. Appl. Catal. B 2014, 156–157, 350. doi: 10.1016/j.apcatb.2014.03.018  doi: 10.1016/j.apcatb.2014.03.018

    13. [13]

      Zhu, J. Q.; Peng, X. X.; Yao, L.; Tong, D. M.; Hu, C. W. Catal. Sci. Technol. 2012, 2, 529. doi: 10.1039/c1cy00333j  doi: 10.1039/c1cy00333j

    14. [14]

      Wang, Y. L.; Li, Q.; Weng, W. Z.; Xia, W. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2016, 32, 2776.  doi: 10.3866/PKU.WHXB201608302

    15. [15]

      Zhao, X. Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Int. J. Hydrog. Energy 2016, 41, 2447. doi: 10.1016/j.ijhydene.2015.10.111  doi: 10.1016/j.ijhydene.2015.10.111

    16. [16]

      Zhang, S. H.; Shi, C.; Chen, B. B.; Zhang, Y. L.; Qiu, J. S. Catal. Commun. 2015, 69, 123. doi: 10.1016/j.catcom.2015.06.003  doi: 10.1016/j.catcom.2015.06.003

    17. [17]

      Claridge, J. B.; York, A. P. E.; Brungs, A. J.; Marquez-Alvarez, C.; Sloan, J.; Tsang, S. C.; Green, M. L. H. J. Catal. 1998, 180, 85. doi: 10.1006/jcat.1998.2260  doi: 10.1006/jcat.1998.2260

    18. [18]

      Li, J. F.; Xiao, B.; Yan, R.; Yi, R. J. Chem. Eng. 2007, 35, 53.

    19. [19]

      Jiang, J. T.; Wei, X. J.; Xu, C. Y.; Zhou, Z. X.; Zhen, L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036  doi: 10.1016/j.jmmm.2012.12.036

    20. [20]

      Ding, C. M.; Wang, J. W.; Ai, G. G.; Liu, S. B.; Liu, P.; Zhang, K.; Han, Y. L.; Ma, X. S. Fuel 2016, 175, 1. doi: 10.1016/j.fuel.2016.02.024  doi: 10.1016/j.fuel.2016.02.024

    21. [21]

      He, S. F.; Zheng, X. M.; Mo, L. Y.; Yu, W. J.; Wang, H.; Luo, Y. M. MRS Bull. 2014, 49, 108. doi: 10.1016/j.materresbull.2013.08.051  doi: 10.1016/j.materresbull.2013.08.051

    22. [22]

      Xia, W. S.; Hou, Y. H.; Chang, G.; Weng, W. Z.; Han, G. B.; Wan, H. L. Int. J. Hydrog. Energy 2012, 37, 8343. doi: 10.1016/j.ijhydene.2012.02.141  doi: 10.1016/j.ijhydene.2012.02.141

    23. [23]

      Solsona, B.; López Nieto, J. M.; Concepción, P.; Dejoz, A.; Ivars, F.; Vázquez, M. I. J. Catal. 2011, 280, 28. doi: 10.1016/j.jcat.2011.02.010  doi: 10.1016/j.jcat.2011.02.010

    24. [24]

      Venugopal, A.; Naveen Kumar, S.; Ashok, J.; Hari Prasad, D.; Durga Kumari, V.; Prasad, K. B. S.; Subrahmanyam, M. Int. J. Hydrog. Energy 2007, 32, 1782. doi: 10.1016/j.ijhydene.2007.01.007  doi: 10.1016/j.ijhydene.2007.01.007

    25. [25]

      Arbag, H.; Yasyerli, S.; Yasyerli, N.; Dogu, T.; Dogu, G. Top. Catal. 2013, 56, 1695. doi: 10.1007/s11244-013-0105-3  doi: 10.1007/s11244-013-0105-3

    26. [26]

      Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. ACS Catal. 2015, 5, 3028. doi: 10.1021/acscatal.5b00357  doi: 10.1021/acscatal.5b00357

    27. [27]

      Xia, W. S.; Chang, G.; Hou, Y. H.; Weng, W. Z.; Wan, H. L. Acta Phys. -Chim. Sin. 2011, 27, 1567.  doi: 10.3866/PKU.WHXB20110627

    28. [28]

      Xia, W. S.; Chen, R. F.; Wang, Y. L.; Li, Q.; Weng, W. Z.; Wan, H. L. Xiamen Univ. J. Nat. Sci. Ed. 2015, 54, 17.  doi: 10.6043/j.issn.0438-0479.2015.05.17

    29. [29]

      Mohammadzadeh Valendar, H.; Yu, D. W.; Barati, M.; Rezaie, H. J. Therm. Anal. Calorim. 2016, 128, 553. doi: 10.1007/s10973-016-5883-y  doi: 10.1007/s10973-016-5883-y

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(12)
  • Abstract views(485)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return