Citation: LIU Fang, ZHANG Lufeng, DONG Qian, CHEN Zhuo. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 651-656. doi: 10.3866/PKU.WHXB201805037 shu

Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules

  • Corresponding author: CHEN Zhuo, zhuochen@hnu.edu.cn
  • Received Date: 15 May 2018
    Revised Date: 13 June 2018
    Accepted Date: 22 June 2018
    Available Online: 28 June 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China 21522501the Hunan Provincial Natural Science Foundation, China 2018JJ1007The project was supported by the National Natural Science Foundation of China 21521063The project was supported by the National Natural Science Foundation of China (21522501, 21521063) and the Hunan Provincial Natural Science Foundation, China (2018JJ1007)

  • The preparation of plasmonic metal-based substrates has been a hot research topic during the past decades in the area of surface-enhanced Raman spectroscopy (SERS). The localized surface plasmon resonance effect of plasmonic metal nanostructures enhances the electromagnetic field for SERS analysis, thereby making SERS an extremely sensitive detection technique. However, commonly developed plasmonic metal substrates exhibit poor stability and reproducibility. Since the separation of graphene from graphite, graphene has been widely used in various fields because of its unique physical, chemical, electronic, and optical properties. In the field of SERS, graphene has been used for graphene-enhanced Raman scattering, which makes use of the chemical enhancement mechanism in SERS. In addition, it has capabilities of surface molecular enrichment, quenching fluorescence, surface homogenization, and has strong chemical stability. Due to these characteristics of graphene, SERS substrates based on graphene-metal nanocapsules have attracted the attention of researchers. In this work, a small size gold-graphitic nanocapsules (Au@G) was prepared by chemical vapor deposition (CVD). The material exhibits a core-shell structure consisting of a graphitized carbon layer coated on Au nanoparticles (Au NPs). The Au NP core of the Au@G provides a major enhancement factor for Raman analysis, and the external graphitized carbon shell ensures strong chemical stability of the material. The Au@G exhibits a uniform particle size with diameter ~17 nm. In order to control the size of the Au@G, tetraethyl orthosilicate (TEOS) and tetraethylorthotrimethylammonium bromide were used as the raw material and template, respectively, a 45 nm-thick layer of mesoporous silica was coated on the synthesized Au NPs. The presence of the mesoporous silica capping layer prevented aggregation and particle size growth of the Au NPs during high-temperature CVD. At the same time, we studied the effect of TEOS concentration on the growth of the graphitized carbon layer during CVD. The results revealed that a decrease of the TEOS concentration is conducive for obtaining a high graphitic Au@G, and the concentration of TEOS does not affect the particle size of the Au@G. Raman detection of crystal violet molecules using Au@G demonstrated the latter's good Raman enhancement effect. The Au@G prepared by high-temperature CVD exhibits a clean surface with no impurities. It is an SERS substrate with both physical and chemical enhancement. The unique Raman spectral peaks and small size of Au@G ensure its great potential for use in the fields of molecular detection and cell imaging analysis.
  • 加载中
    1. [1]

      Cortes, E.; Etchegoin, P. G.; Le Ru, E. C.; Fainstein, A.; Vela, M. E.; Salvarezzaet, R. C. J. Am. Chem. Soc. 2010, 132, 18034. doi: 10.1021/ja108989b  doi: 10.1021/ja108989b

    2. [2]

      Sun, M.; Zhang, Z.; Zheng, H.; Xu, H. Sci. Rep. 2012, 2, 647. doi: 10.1038/srep00647  doi: 10.1038/srep00647

    3. [3]

      Hudson, S. D.; Chumanov, G. Anal. Bioanal. Chem. 2009, 394, 679. doi: 10.1007/s00216-009-2756-2  doi: 10.1007/s00216-009-2756-2

    4. [4]

      Tripp, R. A.; Dluhy, R. A.; Zhao, Y. Nano Today 2008, 3, 31. doi: 10.1016/S1748-0132(08)70042-2  doi: 10.1016/S1748-0132(08)70042-2

    5. [5]

      Quang, L. X.; Lim, C.; Seong, G. H.; Choo, J.; Do, K. J.; Yoo, S. Lab. Chip. 2008, 8, 2214. doi: 10.1039/B808835G  doi: 10.1039/B808835G

    6. [6]

      Golightly, R. S.; Doering, W. E.; Natan, M. J. ACS Nano 2009, 3 (10), 2859. doi: 10.1021/nn9013593  doi: 10.1021/nn9013593

    7. [7]

      Willets, K. A.; Duyne, R. P. V. Annu. Rev. Phys. Chem. 2007, 58, 267. doi: 10.1146/annurev.physchem.58.032806.104607  doi: 10.1146/annurev.physchem.58.032806.104607

    8. [8]

      Henry, A.; Sharma, B.; Cardinal, M. F.; Kurouski, D.; Duyne, R. P. V. Anal. Chem. 2016, 88: 6638. doi: 10.1021/acs.analchem.6b01597  doi: 10.1021/acs.analchem.6b01597

    9. [9]

      Zhang, B.; Xu, P.; Xie, X.; Wei, H.; Li, Z.; Mack, N. H.; Han, X.; Xu, H.; Wang, H. J. Mater. Chem. 2011, 21, 2495. doi: 10.1039/C0JM02837A  doi: 10.1039/C0JM02837A

    10. [10]

      Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Nat. Mater. 2013, 12, 165. doi: 10.1038/nmat3488  doi: 10.1038/nmat3488

    11. [11]

      Wang, J.; Zhou, F.; Duan, G.; Li, Y.; Liu, G.; Su, F.; Cai, W. RSC Adv. 2014, 4, 8758. doi: 10.1039/C3RA47882C  doi: 10.1039/C3RA47882C

    12. [12]

      Xu, P.; Han, X.; Zhang, B.; Du, Y.; Wang, H. Chem. Soc. Rev. 2014, 43, 1349. doi: 10.1039/C3CS60380F  doi: 10.1039/C3CS60380F

    13. [13]

      Hakonen, A.; Svedendahl, M.; Ogier, R.; Yang, Z.; Lodewijks, K.; Verre, R.; Shegai, T.; Andersson, P. O.; K ll, M. Nanoscale 2015, 7, 9405. doi: 10.1039/C5NR01654A  doi: 10.1039/C5NR01654A

    14. [14]

      Kang, L.; Xu, P.; Chen, D.; Zhang, B.; Han, X.; Li, Q.; Wang, H. J. Phys. Chem. C 2013, 117, 10007. doi: 10.1021/jp400572z  doi: 10.1021/jp400572z

    15. [15]

      Schluecker, S. Angew. Chem. Int. Ed. 2014, 53, 4756. doi: 10.1002/anie.201205748  doi: 10.1002/anie.201205748

    16. [16]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    17. [17]

      Somani, P. R.; Somani, S. P.; Umeno, M. P. Chem. Phys. Lett. 2006, 430, 56. doi: 10.1016/j.cplett.2006.06.081  doi: 10.1016/j.cplett.2006.06.081

    18. [18]

      Liu, Z. F. Acta. Phys. -Chim. Sin. 2016, 32 (4), 810.  doi: 10.3866/PKU.WHXB201603012

    19. [19]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132. doi: 10.1021/cr900070d  doi: 10.1021/cr900070d

    20. [20]

      Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Chem. Soc. Rev. 2014, 43, 5288. doi: 10.1039/C4CS00060A  doi: 10.1039/C4CS00060A

    21. [21]

      Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Mildred, S.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. Nano Lett. 2010, 10, 553. doi: 10.1021/nl903414x  doi: 10.1021/nl903414x

    22. [22]

      Kang, L.; Chu, J.; Zhao, H.; Xu, P.; Sun, M. J. Mater. Chem. A 2015, 3, 9024. doi: 10.1039/C5TC01759A  doi: 10.1039/C5TC01759A

    23. [23]

      Li, X.; Li, J.; Zhou, X.; Ma, Y.; Zheng, Z.; Duan, X. Carbon 2014, 66, 713. doi: 10.1016/j.carbon.2013.09.076  doi: 10.1016/j.carbon.2013.09.076

    24. [24]

      Gong, T.; Zhu, Y.; Zhang, J.; Ren, W.; Quan, J.; Wang, N. Carbon 2015, 87, 385. doi: 10.1016/j.carbon.2015.02.055  doi: 10.1016/j.carbon.2015.02.055

    25. [25]

      Zhao, Y.; Xie, Y.; Bao, Z.; Tsang, Y. H.; Xie, L.; Chai, Y. J. Phys. Chem. C 2014, 118, 11827. doi: 10.1021/jp503487a  doi: 10.1021/jp503487a

    26. [26]

      Wu, C.; Lim, Z.; Zhou, C.; Guo, W. W.; Zhou, S.; Zhu, Y. Chem. Commun. 2013, 49, 3215. doi: 10.1039/c3cc39202c  doi: 10.1039/c3cc39202c

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(8)
  • Abstract views(356)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return