Citation: WANG Kexin, SHI Liurong, WANG Mingzhan, YANG Hao, LIU Zhongfan, PENG Hailin. Biomass Hydroxyapatite-templated Synthesis of 3D Graphene[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1112-1118. doi: 10.3866/PKU.WHXB201805032 shu

Biomass Hydroxyapatite-templated Synthesis of 3D Graphene

  • Corresponding author: LIU Zhongfan, zfliu@pku.edu.cn PENG Hailin, hlpeng@pku.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 22 June 2018
    Accepted Date: 26 June 2018
    Available Online: 26 October 2018

    Fund Project: The project was supported by the Beijing Municipal Science & Technology Commission, China (Z161100002116002, Z161100002116021), the National Basic Research Program of China (2014CB932500, 2016YFA0200101), and the National Natural Science Foundation of China (21525310, 51432002, 51520105003)the National Basic Research Program of China 2014CB932500the National Basic Research Program of China 2016YFA0200101the National Natural Science Foundation of China 21525310the National Natural Science Foundation of China 51432002the Beijing Municipal Science & Technology Commission, China Z161100002116002, Z161100002116021the National Natural Science Foundation of China 51520105003the Beijing Municipal Science & Technology Commission, China Z161100002116002

  • As a new 2D material with excellent chemical stability, good electric conductivity, and high specific surface area, graphene has been widely used in energy storage and conversion devices. However, 2D graphene layers are easily stacked, which may significantly reduce the surface area and degrade the excellent electrical properties of graphene. To avoid this, one of the most effective methods is to construct 3D graphene (3DG) with specific porous microstructures. Chemical vapor deposition (CVD) is an important method for the synthesis of high-quality 3DG, where templates play a defining role in controlling the structure and cost of 3DG. Metallic materials with 3D microstructures, such as nickel foam, have proven to be useful as substrates for the growth of high-quality 3DG. However, metal substrates are usually expensive, and the pickling solution generated after etching may cause environmental problems. Therefore, non-metallic substrate materials with lower costs have been investigated for the preparation of 3DG. Herein, we developed a novel template material, mammal bone ashes, for the CVD preparation of 3DG. Mammal bone ash is an inexpensive and abundant biomass hydroxyapatite. During the high-temperature CVD reaction, the bone ash powders were slightly sintered to form a continuous porous structure with graphene coating. The morphology of 3DG is inherited from the microstructure of bone ash templates. After removing the bone ash template with hydrochloric acid, the template-grown 3DG was obtained with a unique bicontinuous structure, i.e. both the graphene framework and the void space were continuous. In addition, the pickling solution of the bone ash templates after etching was exactly the same as that for the raw materials for the production of phosphoric acid to achieve high atom utilization. We further optimized the graphitization degrees, layer number, and porous morphology of 3DGs. The microstructure evolution of 3DG is highly relevant to the layer thickness and uniformity of graphene layers. A short growth time would lead to a non-uniform and thin layer of graphene, which is not able to support a complex 3D porous structure. In contrast, a uniform graphene layer with proper thickness is capable of forming a robust 3D architecture. In addition, the facile CVD method can be extended to a series of metal phosphate templates, including tricalcium phosphate [Ca3(PO4)2], trimagnesium phosphate [Mg3(PO4)2], and aluminum phosphate [AlPO4]. 3DG with bicontinuous morphology is promising as a conductive frame material in electrochemical energy storage devices. As an illustration, high-performance Li-S batteries were fabricated by the uniform composition of an S cathode on 3DG. In comparison with heavily stacked 2D graphene sheets in reduced graphene oxide / S composite, the non-flat structure of 3DGs remained unchanged even after the harsh melt-diffusion process of high-viscosity liquid sulfur. The resulting 3DG/S cathode delivered a high specific capacity of ~550 mAh∙g-1 at a high current rate (2C). Our work opens an avenue to the low-cost and high-utility production of 3D graphene, which could be integrated with the well-developed phosphorus chemical industry.
  • 加载中
    1. [1]

      Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. Nat. Mater. 2014, 14 (3), 271. doi: 10.1038/nmat4170  doi: 10.1038/nmat4170

    2. [2]

      El-Kady, M. F.; Shao, Y.; Kaner, R. B. Nat. Rev. Mater. 2016, 16033. doi: 10.1038/natrevmats.2016.33  doi: 10.1038/natrevmats.2016.33

    3. [3]

      Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Chem. Rev. 2015, 115 (11), 5159. doi: 10.1021/cr5006217  doi: 10.1021/cr5006217

    4. [4]

      Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Adv. Mater. 2017, 29 (11), 1603421. doi: 10.1002/adma.201603421  doi: 10.1002/adma.201603421

    5. [5]

      Dong, Y.; Wu, Z. S.; Ren, W.; Cheng, H. M.; Bao, X. Sci. Bull. 2017, 62 (10), 724. doi: 10.1016/j.scib.2017.04.010  doi: 10.1016/j.scib.2017.04.010

    6. [6]

      Chen, K.; Chai, Z.; Li, C.; Shi, L.; Liu, M.; Xie, Q.; Zhang, Y.; Xu, D.; Manivannan, A.; Liu, Z. ACS Nano 2016, 10 (3), 3665. doi: 10.1021/acsnano.6b00113  doi: 10.1021/acsnano.6b00113

    7. [7]

      Compton, O. C.; Nguyen, S. T. Small 2010, 6 (6), 711. doi: 10.1002/smll.200901934  doi: 10.1002/smll.200901934

    8. [8]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Nat. Mater. 2011, 10 (6), 424. doi: 10.1038/nmat3001  doi: 10.1038/nmat3001

    9. [9]

      Cui, C.; Qian, W.; Yu, Y.; Kong, C.; Yu, B.; Xiang, L.; Wei, F. J. Am. Chem. Soc. 2014, 136 (6), 2256. doi: 10.1021/ja412219r  doi: 10.1021/ja412219r

    10. [10]

      Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. ACS Nano 2010, 4 (7), 4206. doi: 10.1021/nn100971s  doi: 10.1021/nn100971s

    11. [11]

      Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Adv. Funct. Mater. 2016, 26 (4), 577. doi: 10.1002/adfm.201503726  doi: 10.1002/adfm.201503726

    12. [12]

      Bi, H.; Lin, T.; Xu, F.; Tang, Y.; Liu, Z.; Huang, F. Nano Lett. 2016, 16 (1), 349. doi: 10.1021/acs.nanolett.5b03923  doi: 10.1021/acs.nanolett.5b03923

    13. [13]

      Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Priydarshi, M. K.; Zhang, Y.; Manivannan, A.; Liu, Z. Small 2015, 11 (47), 6302. doi: 10.1002/smll.201502013  doi: 10.1002/smll.201502013

    14. [14]

      Chen, K.; Li, C.; Shi, L.; Gao, T.; Song, X.; Bachmatiuk, A.; Zou, Z.; Deng, B.; Ji, Q.; Ma, D.; et al. Nat. Commun. 2016, 7, 13440. doi: 10.1038/ncomms13440  doi: 10.1038/ncomms13440

    15. [15]

      Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2016, 138 (20), 6360. doi: 10.1021/jacs.6b02262  doi: 10.1021/jacs.6b02262

    16. [16]

      Ning, G.; Fan, Z.; Wang, G.; Gao, J.; Qian, W.; Wei, F. Chem. Commun. 2011, 47 (21), 5976. doi: 10.1039/c1cc11159k  doi: 10.1039/c1cc11159k

    17. [17]

      Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Nat. Commun. 2014, 5. doi: 10.1038/ncomms4410  doi: 10.1038/ncomms4410

    18. [18]

      Barakat, N. A. M.; Khil, M. S.; Omran, A. M.; Sheikh, F. A.; Kim, H. Y. J. Mater. Process. Tech. 2009, 209 (7), 3408. doi: 10.1016/j.jmatprotec.2008.07.040  doi: 10.1016/j.jmatprotec.2008.07.040

    19. [19]

      Sobczak, A.; Kowalski, Z.; Wzorek, Z. Acta. Bioeng. Biomech. 2009, 11 (4), 23.

    20. [20]

      Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. ACS Nano 2009, 3 (11), 3730. doi: 10.1021/nn900933u  doi: 10.1021/nn900933u

    21. [21]

      Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114 (23), 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    22. [22]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45 (20), 5605. doi: 10.1039/C5CS00410A  doi: 10.1039/C5CS00410A

    23. [23]

      Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20 (44), 9821. doi: 10.1039/B925751A  doi: 10.1039/B925751A

    24. [24]

      Fang, X.; Peng, H. Small 2015, 11 (13), 1488. doi: 10.1002/smll.201402354  doi: 10.1002/smll.201402354

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    9. [9]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    10. [10]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    11. [11]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    12. [12]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    13. [13]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    14. [14]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    15. [15]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    16. [16]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    17. [17]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    18. [18]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    19. [19]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    20. [20]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

Metrics
  • PDF Downloads(8)
  • Abstract views(625)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return