Citation: WANG Kexin, SHI Liurong, WANG Mingzhan, YANG Hao, LIU Zhongfan, PENG Hailin. Biomass Hydroxyapatite-templated Synthesis of 3D Graphene[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1112-1118. doi: 10.3866/PKU.WHXB201805032 shu

Biomass Hydroxyapatite-templated Synthesis of 3D Graphene

  • Corresponding author: LIU Zhongfan, zfliu@pku.edu.cn PENG Hailin, hlpeng@pku.edu.cn
  • Received Date: 14 May 2018
    Revised Date: 22 June 2018
    Accepted Date: 26 June 2018
    Available Online: 26 October 2018

    Fund Project: The project was supported by the Beijing Municipal Science & Technology Commission, China (Z161100002116002, Z161100002116021), the National Basic Research Program of China (2014CB932500, 2016YFA0200101), and the National Natural Science Foundation of China (21525310, 51432002, 51520105003)the National Basic Research Program of China 2014CB932500the National Basic Research Program of China 2016YFA0200101the National Natural Science Foundation of China 21525310the National Natural Science Foundation of China 51432002the Beijing Municipal Science & Technology Commission, China Z161100002116002, Z161100002116021the National Natural Science Foundation of China 51520105003the Beijing Municipal Science & Technology Commission, China Z161100002116002

  • As a new 2D material with excellent chemical stability, good electric conductivity, and high specific surface area, graphene has been widely used in energy storage and conversion devices. However, 2D graphene layers are easily stacked, which may significantly reduce the surface area and degrade the excellent electrical properties of graphene. To avoid this, one of the most effective methods is to construct 3D graphene (3DG) with specific porous microstructures. Chemical vapor deposition (CVD) is an important method for the synthesis of high-quality 3DG, where templates play a defining role in controlling the structure and cost of 3DG. Metallic materials with 3D microstructures, such as nickel foam, have proven to be useful as substrates for the growth of high-quality 3DG. However, metal substrates are usually expensive, and the pickling solution generated after etching may cause environmental problems. Therefore, non-metallic substrate materials with lower costs have been investigated for the preparation of 3DG. Herein, we developed a novel template material, mammal bone ashes, for the CVD preparation of 3DG. Mammal bone ash is an inexpensive and abundant biomass hydroxyapatite. During the high-temperature CVD reaction, the bone ash powders were slightly sintered to form a continuous porous structure with graphene coating. The morphology of 3DG is inherited from the microstructure of bone ash templates. After removing the bone ash template with hydrochloric acid, the template-grown 3DG was obtained with a unique bicontinuous structure, i.e. both the graphene framework and the void space were continuous. In addition, the pickling solution of the bone ash templates after etching was exactly the same as that for the raw materials for the production of phosphoric acid to achieve high atom utilization. We further optimized the graphitization degrees, layer number, and porous morphology of 3DGs. The microstructure evolution of 3DG is highly relevant to the layer thickness and uniformity of graphene layers. A short growth time would lead to a non-uniform and thin layer of graphene, which is not able to support a complex 3D porous structure. In contrast, a uniform graphene layer with proper thickness is capable of forming a robust 3D architecture. In addition, the facile CVD method can be extended to a series of metal phosphate templates, including tricalcium phosphate [Ca3(PO4)2], trimagnesium phosphate [Mg3(PO4)2], and aluminum phosphate [AlPO4]. 3DG with bicontinuous morphology is promising as a conductive frame material in electrochemical energy storage devices. As an illustration, high-performance Li-S batteries were fabricated by the uniform composition of an S cathode on 3DG. In comparison with heavily stacked 2D graphene sheets in reduced graphene oxide / S composite, the non-flat structure of 3DGs remained unchanged even after the harsh melt-diffusion process of high-viscosity liquid sulfur. The resulting 3DG/S cathode delivered a high specific capacity of ~550 mAh∙g-1 at a high current rate (2C). Our work opens an avenue to the low-cost and high-utility production of 3D graphene, which could be integrated with the well-developed phosphorus chemical industry.
  • 加载中
    1. [1]

      Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. Nat. Mater. 2014, 14 (3), 271. doi: 10.1038/nmat4170  doi: 10.1038/nmat4170

    2. [2]

      El-Kady, M. F.; Shao, Y.; Kaner, R. B. Nat. Rev. Mater. 2016, 16033. doi: 10.1038/natrevmats.2016.33  doi: 10.1038/natrevmats.2016.33

    3. [3]

      Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Chem. Rev. 2015, 115 (11), 5159. doi: 10.1021/cr5006217  doi: 10.1021/cr5006217

    4. [4]

      Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Adv. Mater. 2017, 29 (11), 1603421. doi: 10.1002/adma.201603421  doi: 10.1002/adma.201603421

    5. [5]

      Dong, Y.; Wu, Z. S.; Ren, W.; Cheng, H. M.; Bao, X. Sci. Bull. 2017, 62 (10), 724. doi: 10.1016/j.scib.2017.04.010  doi: 10.1016/j.scib.2017.04.010

    6. [6]

      Chen, K.; Chai, Z.; Li, C.; Shi, L.; Liu, M.; Xie, Q.; Zhang, Y.; Xu, D.; Manivannan, A.; Liu, Z. ACS Nano 2016, 10 (3), 3665. doi: 10.1021/acsnano.6b00113  doi: 10.1021/acsnano.6b00113

    7. [7]

      Compton, O. C.; Nguyen, S. T. Small 2010, 6 (6), 711. doi: 10.1002/smll.200901934  doi: 10.1002/smll.200901934

    8. [8]

      Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. Nat. Mater. 2011, 10 (6), 424. doi: 10.1038/nmat3001  doi: 10.1038/nmat3001

    9. [9]

      Cui, C.; Qian, W.; Yu, Y.; Kong, C.; Yu, B.; Xiang, L.; Wei, F. J. Am. Chem. Soc. 2014, 136 (6), 2256. doi: 10.1021/ja412219r  doi: 10.1021/ja412219r

    10. [10]

      Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. ACS Nano 2010, 4 (7), 4206. doi: 10.1021/nn100971s  doi: 10.1021/nn100971s

    11. [11]

      Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Adv. Funct. Mater. 2016, 26 (4), 577. doi: 10.1002/adfm.201503726  doi: 10.1002/adfm.201503726

    12. [12]

      Bi, H.; Lin, T.; Xu, F.; Tang, Y.; Liu, Z.; Huang, F. Nano Lett. 2016, 16 (1), 349. doi: 10.1021/acs.nanolett.5b03923  doi: 10.1021/acs.nanolett.5b03923

    13. [13]

      Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Priydarshi, M. K.; Zhang, Y.; Manivannan, A.; Liu, Z. Small 2015, 11 (47), 6302. doi: 10.1002/smll.201502013  doi: 10.1002/smll.201502013

    14. [14]

      Chen, K.; Li, C.; Shi, L.; Gao, T.; Song, X.; Bachmatiuk, A.; Zou, Z.; Deng, B.; Ji, Q.; Ma, D.; et al. Nat. Commun. 2016, 7, 13440. doi: 10.1038/ncomms13440  doi: 10.1038/ncomms13440

    15. [15]

      Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2016, 138 (20), 6360. doi: 10.1021/jacs.6b02262  doi: 10.1021/jacs.6b02262

    16. [16]

      Ning, G.; Fan, Z.; Wang, G.; Gao, J.; Qian, W.; Wei, F. Chem. Commun. 2011, 47 (21), 5976. doi: 10.1039/c1cc11159k  doi: 10.1039/c1cc11159k

    17. [17]

      Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Nat. Commun. 2014, 5. doi: 10.1038/ncomms4410  doi: 10.1038/ncomms4410

    18. [18]

      Barakat, N. A. M.; Khil, M. S.; Omran, A. M.; Sheikh, F. A.; Kim, H. Y. J. Mater. Process. Tech. 2009, 209 (7), 3408. doi: 10.1016/j.jmatprotec.2008.07.040  doi: 10.1016/j.jmatprotec.2008.07.040

    19. [19]

      Sobczak, A.; Kowalski, Z.; Wzorek, Z. Acta. Bioeng. Biomech. 2009, 11 (4), 23.

    20. [20]

      Lv, W.; Tang, D. M.; He, Y. B.; You, C. H.; Shi, Z. Q.; Chen, X. C.; Chen, C. M.; Hou, P. X.; Liu, C.; Yang, Q. H. ACS Nano 2009, 3 (11), 3730. doi: 10.1021/nn900933u  doi: 10.1021/nn900933u

    21. [21]

      Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114 (23), 11751. doi: 10.1021/cr500062v  doi: 10.1021/cr500062v

    22. [22]

      Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Chem. Soc. Rev. 2016, 45 (20), 5605. doi: 10.1039/C5CS00410A  doi: 10.1039/C5CS00410A

    23. [23]

      Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20 (44), 9821. doi: 10.1039/B925751A  doi: 10.1039/B925751A

    24. [24]

      Fang, X.; Peng, H. Small 2015, 11 (13), 1488. doi: 10.1002/smll.201402354  doi: 10.1002/smll.201402354

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    5. [5]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    6. [6]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    7. [7]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    12. [12]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    13. [13]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    16. [16]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    17. [17]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    18. [18]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    19. [19]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    20. [20]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

Metrics
  • PDF Downloads(8)
  • Abstract views(540)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return