Citation: LYU Kangjie, PENG Yanqiu, XIAO Li, LU Juntao, ZHUANG Lin. Atomistic Understanding of the Peculiar Dissolution Behavior of Alkaline Polymer Electrolytes in Alcohol/Water Mixed Solvents[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 378-384. doi: 10.3866/PKU.WHXB201805031 shu

Atomistic Understanding of the Peculiar Dissolution Behavior of Alkaline Polymer Electrolytes in Alcohol/Water Mixed Solvents

  • Corresponding author: XIAO Li, chem.lily@whu.edu.cn ZHUANG Lin, lzhuang@whu.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 2 May 2018
    Accepted Date: 2 May 2018
    Available Online: 3 April 2018

    Fund Project: the National Natural Science Foundation of China 21633008The project was supported by the National Key Research and Development Program of China (2016YFB0101203) and the National Natural Science Foundation of China (91545205, 21633008)the National Key Research and Development Program of China 2016YFB0101203the National Natural Science Foundation of China 91545205

  • Self-aggregated quaternary ammonium polysulfone (aQAPS) is a high-performance alkaline polymer electrolyte that has been applied in alkaline polymer electrolyte fuel cells (APEFCs). For a long time, N, N-dimethyl formamide (DMF) has been considered the best solvent to dissolve aQAPS, but the high boiling point of DMF makes it hard to remove from the electrodes, which potentially poisons the electrocatalysts. Our recent experiments have shown that although aQAPS is unable to dissolve in ethanol, n-propanol, or water, it can dissolve in the mixture of these alcohols and water. This peculiar dissolution behavior significantly facilitates the fabrication of the membrane electrode assembly (MEA) for APEFCs, even though it has not been understood. In this work, atomistic molecular dynamics (MD) simulations were employed to study the dissolution behavior of aQAPS in different solvents, including water, methanol, ethanol, n-propanol, DMF, and the mixture of these non-aqueous solvents and water. The conformation of the aQAPS chain in pure solvents agreed well with the dissolution behavior observed in the experiments, even though in the water-containing mixed solvents, the aQAPS chain tended to be in a more contracted state. The simulations further revealed that the water component in the mixed solvents played dual roles. On one hand, the hydrocarbon chain of aQAPS was compressed to a contracted state upon the addition of water, because of the hydrophobic effect. On the other hand, water can drive the dissociation of the counterion (Cl ), which led to an enhancement in the solute-solvent interaction energy and thus facilitated the dissolution of aQAPS. In most mixed solvents, the compensation of these two interactions resulted in a general increase in the total solute-solvent interaction energy; therefore, the addition of water was energetically favorable for the dissolution of aQAPS. This study not only furthers our fundamental understanding of the dissolution behavior of polyelectrolytes but also is technologically significant for the development of better APEFCs.
  • 加载中
    1. [1]

      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; et al. Energy Environ. Sci. 2014, 7, 3135. doi: 10.1039/C4EE01303D  doi: 10.1039/C4EE01303D

    2. [2]

      Merle, G.; Wessling, M.; Nijmeijer, K. J. Memb. Sci. 2011, 377, 1. doi: 10.1016/j.memsci.2011.04.043  doi: 10.1016/j.memsci.2011.04.043

    3. [3]

      Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. -Int. Ed. 2007, 46, 8024. doi: 10.1002/anie.200701334  doi: 10.1002/anie.200701334

    4. [4]

      Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T. Proc. Natl. Acad. Sci. USA 2008, 105, 20611. doi: 10.1073/pnas.0810041106  doi: 10.1073/pnas.0810041106

    5. [5]

      Chakraborty, S.; Ghaisas, S. V.; Majumder, C. Eur. Phys. J. B 2012, 85, 227. doi: 10.1140/epjb/e2012-20591-7  doi: 10.1140/epjb/e2012-20591-7

    6. [6]

      Varcoe, J. R.; Slade, R. C. T.; Wright, G. L.; Chen, Y. J. Phys. Chem. B 2006, 110, 21041. doi: 10.1021/jp064898b  doi: 10.1021/jp064898b

    7. [7]

      Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2014, 7, 354. doi: 10.1039/C3EE43275K  doi: 10.1039/C3EE43275K

    8. [8]

      Chen, C.; Pan, J.; Han, J.; Wang, Y.; Zhu, L.; Hickner, M. A.; Zhuang, L. J. Mater. Chem. A 2016, 4, 4071. doi: 10.1039/C5TA09438K  doi: 10.1039/C5TA09438K

    9. [9]

      Pan, J.; Li, Y.; Han, J.; Li, G.; Tan, L.; Chen, C.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2013, 6, 2912. doi: 10.1039/c3ee41968a  doi: 10.1039/c3ee41968a

    10. [10]

      Wang, Y.; Wang, G.; Li, G.; Huang, B.; Pan, J.; Liu, Q.; Han, J.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2015, 8, 177. doi: 10.1039/C4EE02564D  doi: 10.1039/C4EE02564D

    11. [11]

      Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301. doi: 10.1039/B918763B  doi: 10.1039/B918763B

    12. [12]

      Filimon, A.; Avram, E.; Ioan, S. Polym. Bull. 2013, 70, 1835. doi: 10.1007/s00289-012-0874-z  doi: 10.1007/s00289-012-0874-z

    13. [13]

      Ioan, S.; Filimon, A.; Avram, E. J. Macromol. Sci. Part B 2005, 44, 129. doi: 10.1081/MB-200044623  doi: 10.1081/MB-200044623

    14. [14]

      Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindah, E. SoftwareX 2015, 12, 19. doi: 10.1016/j.softx.2015.06.001  doi: 10.1016/j.softx.2015.06.001

    15. [15]

      Sousa da Silva, A. W.; Vranken, W. F. BMC Res. Notes 2012, 5, 367. doi: 10.1186/1756-0500-5-367  doi: 10.1186/1756-0500-5-367

    16. [16]

      Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035  doi: 10.1002/jcc.20035

    17. [17]

      Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23, 1623. doi: 10.1002/jcc.10128  doi: 10.1002/jcc.10128

    18. [18]

      Caleman, C.; Van Maaren, P. J.; Hong, M.; Hub, J. S.; Costa, L. T.; Van Der Spoel, D. J. Chem. Theory Comput. 2012, 8, 61. doi: 10.1021/ct200731v  doi: 10.1021/ct200731v

    19. [19]

      Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. doi: 10.1021/j100308a038  doi: 10.1021/j100308a038

    20. [20]

      Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. doi: 10.1002/jcc.540130805  doi: 10.1002/jcc.540130805

    21. [21]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5  doi: 10.1016/0263-7855(96)00018-5

    22. [22]

      Evans, D. J.; Holian, B. L. J. Chem. Phys. 1985, 83, 4069. doi: 10.1063/1.449071  doi: 10.1063/1.449071

    23. [23]

      Martoňák, R.; Laio, A.; Parrinello, M. Phys. Rev. Lett. 2003, 90, 075503. doi: 10.1103/PhysRevLett.90.075503  doi: 10.1103/PhysRevLett.90.075503

    24. [24]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117  doi: 10.1063/1.470117

    25. [25]

      Mukherji, D.; Marques, C. M.; Kremer, K. Nat. Commun. 2014, 5, 4882. doi: 10.1038/ncomms5882  doi: 10.1038/ncomms5882

    26. [26]

      Fixman, M. J. Chem. Phys. 1962, 36, 306. doi: 10.1063/1.1732501  doi: 10.1063/1.1732501

    27. [27]

      Madkour, T. M. Chem. Phys. 2001, 274, 187. doi: 10.1016/S0301-0104(01)00507-9  doi: 10.1016/S0301-0104(01)00507-9

    28. [28]

      Silverstein, T. P. J. Chem. Educ. 1998, 75, 116. doi: 10.1021/ed075p116  doi: 10.1021/ed075p116

    29. [29]

      Mark, H. Sci. Mon. 1954, 79, 508.

    30. [30]

      Pavlopoulou, E.; Kim, C. S.; Lee, S. S.; Chen, Z.; Facchetti, A.; Toney, M. F.; Loo, Y. L. Chem. Mater. 2014, 26, 5020. doi: 10.1021/cm502112z  doi: 10.1021/cm502112z

  • 加载中
    1. [1]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    5. [5]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    6. [6]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    7. [7]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    10. [10]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    13. [13]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    14. [14]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    15. [15]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    16. [16]

      Jing Guo . New electrolyte concept: Compact ion-pair aggregate electrolyte. Chinese Chemical Letters, 2025, 36(4): 110512-. doi: 10.1016/j.cclet.2024.110512

    17. [17]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    18. [18]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    19. [19]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    20. [20]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

Metrics
  • PDF Downloads(10)
  • Abstract views(517)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return