Citation: LIU Lei, HAO Yaya, DENG Suhui, WANG Kun, LI Jiang, WANG Lihua, FAN Chunhai, LI Jiajun, LIU Huajie. Multi-Mode Full Spectrum Dark Field Microscope for Single Nanoparticle Localized Surface Plasmon Resonance Dynamics Study[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 371-377. doi: 10.3866/PKU.WHXB201805022 shu

Multi-Mode Full Spectrum Dark Field Microscope for Single Nanoparticle Localized Surface Plasmon Resonance Dynamics Study

  • Corresponding author: LI Jiajun, jiajunli@sinap.ac.cn LIU Huajie, liuhuajie@sinap.ac.cn
  • Received Date: 12 March 2018
    Revised Date: 22 April 2018
    Accepted Date: 23 April 2018
    Available Online: 2 April 2018

    Fund Project: the National Natural Science Foundation of China 21775157the National Natural Science Foundation of China 21722310the National Natural Science Foundation of China U1532119The project was supported by the National Natural Science Foundation of China (21775157, 21722310, U1532119, 61378062, 61665006) and the Instrument Developing Project of the Chinese Academy of Sciencesthe National Natural Science Foundation of China 61378062the National Natural Science Foundation of China 61665006

  • In the last few decades, noble metal nanoparticles (MNP) have been widely used as imaging probes, in the field of bio-imaging, due to their localized surface plasmon resonance (LSPR) phenomenon. Compared to fluorescent probes, MNP imaging exhibits high sensitivity and outstanding signal-to-noise ratio, while the particle itself has good photostability; this makes the MNP probe the perfect candidate for long-term imaging. Currently the most popular MNP imaging and analysis method employs a dark-field microscope with a spectroscope. Since most dark-field microscopes use halogen lamp or mercury lamp as their illumination source, the illumination intensity and wavelength spectrum are limited. Both camera and spectroscopy require longer exposure time to collect sufficient scattering signal to generate a reasonable quality image and scattering spectrum. The narrow illumination spectrum also limits the size of the MNP that can be used (larger-diameter MNP tend to scatter in the near-infrared region). Therefore, a high-intensity and wide-spectrum illumination source is urgently needed in MNP imaging. In this study, we custom-designed a multi-mode dark field microscope by using a supercontinuum laser, comprising of a lightsheet illumination mode for wide-field imaging and a back focus mode for live spectrum analysis, as its illumination source. The total output of the supercontinuum laser was 2 W. Since it was a coherent illumination source it could be focused by the microscope objective to a near diffraction limit area for sufficient intensity. Moreover, since its wavelength spectrum was between 450 nm and 2200 nm, which covered most of the visible and near infrared region, it made the detection of the large-diameter MNP single particle possible. In the back-focus mode, the supercontinuum laser first passed through an annular filter and then entered the objective from the microscope back port. In the lightsheet illumination mode, the laser was focused by a 400-mm cylindrical concave mirror to create a "sheet" and illuminate the sample from its side. In both the illumination modes, the illumination radiation was blocked from the camera to obtain the dark field illumination effect. By using a multi-mode dark field microscope, we could observe a 30-nm-diameter MNP single particle with a color CCD camera in its lightsheet illumination mode and a spectrum time resolution of 1 ms in its back-focus illumination mode. This custom-designed microscope could not only be used to study the MNP single particle in living cells, but more importantly, its application could also be potentially extended to all the MNP-probe-based cell imaging.
  • 加载中
    1. [1]

      Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W. B.; Li, D.; Fan, C. H.; Lee, S. T. Adv. Mater. 2010, 22, 5463. doi: 10.1002/adma.201001934.  doi: 10.1002/adma.201001934

    2. [2]

      Yan, J.; Hu, C. Y.; Wang, P.; Zhao, B.; Ouyang, X. Y.; Zhou, J.; Liu, R.; He, D. N.; Fan, C. H.; Song, S. P. Angew. Chem. Int. Ed. 2015, 54, 2431. doi: 10.1002/anie.201408247  doi: 10.1002/anie.201408247

    3. [3]

      He, Y.; Fan, C. H.; Lee, S. T. Nano Today 2010, 5, 282. doi: 10.1016/j.nantod.2010.06.008  doi: 10.1016/j.nantod.2010.06.008

    4. [4]

      Su, S.; Wu, Y.; Zhu, D.; Chao, J.; Liu, X. F.; Wan, Y.; Su, Y.; Zuo, X. L.; Fan, C. H.; Wang, L. H. Small 2016, 12, 37994. doi: 10.1002/smll.201601066  doi: 10.1002/smll.201601066

    5. [5]

      Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y.; Wang, L. H.; Song, S. P.; Ling, D. S.; et al. J. Am. Chem. Soc. 2017, 139, 15784. doi: 10.1021/jacs.7b07895  doi: 10.1021/jacs.7b07895

    6. [6]

      Xu, H.; Li, Q.; Wang, L. H.; He, Y.; Shi, J. Y.; Tang, B.; Fan, C. H. Chem. Soc. Rev. 2014, 43, 2650. doi: 10.1039/c3cs60309a  doi: 10.1039/c3cs60309a

    7. [7]

      Zhang, Y.; Cui, Z. F.; Kong, H. T.; Xia, K.; Pan, L.; Li, J.; Sun, Y. H.; Shi, J. Y.; Wang, L. H.; Zhu, Y.; et al. Adv. Mater. 2016, 28, 2699. doi: 10.1002/adma.201506232  doi: 10.1002/adma.201506232

    8. [8]

      Zhang, Y.; Wang, Z. Y.; Li, X. J.; Wang, L.; Yin, M.; Wang, L. H.; Chen, N.; Fan, C. H.; Song, H. Y. Adv. Mater. 2016, 28, 1387. doi: 10.1002/adma.201503893  doi: 10.1002/adma.201503893

    9. [9]

      Maragò, O.; Jones, P.; Gucciardi, P.; Volpe, G.; Ferrari, A. Nat. Nanotech. 2013, 8, 807. doi: 10.1038/nnano.2013.208  doi: 10.1038/nnano.2013.208

    10. [10]

      Babcock, H. P.; Chen, C.; Zhuang, X. Biophys. J. 2004, 87, 2749. doi: 10.1529/biophysj.104.042234  doi: 10.1529/biophysj.104.042234

    11. [11]

      Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.; et al. Angew. Chem. Int. Ed. 2011, 50, 11994. doi: 10.1002/anie.201105121  doi: 10.1002/anie.201105121

    12. [12]

      Yong, K. T.; Qian, J.; Roy, I.; Lee, H. H.; Bergey, E. J.; Tramposch, K. M.; He, S.; Swihart, M. T.; Maitra, A.; Prasad, P. N. Nano Lett. 2007, 7, 761. doi: 10.1021/nl063031m  doi: 10.1021/nl063031m

    13. [13]

      Lei, G.; He, Y. Acta. Phys. -Chim. Sin. 2018, 34(1), 11.  doi: 10.3866/PKU.WHXB201706301

    14. [14]

      Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y. Q.; Wang, L. H.; Song, S. P.; Ling, D. S.; et al. J. Am. Chem. Soc. 2017, 139, 15784. doi: 10.1021/jacs.7b07895  doi: 10.1021/jacs.7b07895

    15. [15]

      Cao, X.; Feng, J.; Pan, Q.; Xiong, B.; He, Y.; Yeung, E. S. Anal. Chem. 2017, 89, 2692. doi: 10.1021/acs.analchem.6b03844  doi: 10.1021/acs.analchem.6b03844

    16. [16]

      Pei, H.; Li, F.; Wan, Y.; Wei, M.; Liu, H. J.; Su, Y.; Chen, N.; Huang, Q.; Fan, C. H. J. Am. Chem. Soc. 2012, 134, 11876. doi: 10.1021/ja304118z  doi: 10.1021/ja304118z

    17. [17]

      Chen, N.; Wei, M.; Sun, Y. H.; Li, F.; Pei, H.; Li, X. M.; Su, S.; He, Y.; Wang, L. H.; Shi, J. Y.; et al. Small 2014, 10, 368. doi: 10.1002/smll.201300903  doi: 10.1002/smll.201300903

    18. [18]

      Cao, X.; Lei, G.; Feng, J.; Pan, Q.; Wen, X.; He, Y. Anal. Chem. 2018, 90, 2501. doi: 10.1021/acs.analchem.7b03636  doi: 10.1021/acs.analchem.7b03636

    19. [19]

      Qiao, C; Wu, J.; Huang, Z.; Gao, X.; Liu, J.; Xiong, B.; He, Y.; Yeung, E. S. Anal. Chem. 2017, 89, 5592. doi: 10.1021/acs.analchem.7b00763  doi: 10.1021/acs.analchem.7b00763

    20. [20]

      Liu, M. M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J. J.; Lv, M.; Chen, N.; Song, H. Y.; Lee, J.; et al. Nat. Commun. 2017, 8, 15646. doi: 10.1038/ncomms15646  doi: 10.1038/ncomms15646

    21. [21]

      Su, S.; Wu, Y.; Zhu, D.; Chao, J.; Liu, X. F.; Wan, Y.; Su, Y.; Zuo, X. L.; Fan, C. H.; Wang, L. H. Small 2016, 12, 3794. doi: 10.1002/smll.201601066  doi: 10.1002/smll.201601066

    22. [22]

      Zhang, J.; Wang, L. H.; Zhang, H.; Boey, F.; Song, S. P.; Fan, C. H. Small 2010, 6, 201. doi: 10.1002/smll.200901012  doi: 10.1002/smll.200901012

    23. [23]

      Xu, X. H. N.; Chen, J.; Jeffers, R. B.; Kyriacou, S. Nano Lett. 2008, 2, 175. doi: 10.1021/nl015682i  doi: 10.1021/nl015682i

    24. [24]

      Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X. H. N. ACS Nano 2007, 1, 133. doi: 10.1021/nn700048y  doi: 10.1021/nn700048y

    25. [25]

      Xu, X. H. N.; Brownlow, W. J.; Kyriacou, S. V.; Wan, Q.; Viola, J. J. Biochemistry 2004, 43, 10400. doi: 10.1021/bi036231a  doi: 10.1021/bi036231a

    26. [26]

      Kyriacou, S. V.; Brownlow, W. J.; Xu, X. H. N. Biochemistry 2004, 43, 140. doi: 10.1021/bi0351110  doi: 10.1021/bi0351110

    27. [27]

      Raschke, G.; Kowarik, S.; Franzl, T.; Sonnichsen, C.; Klar, T. A.; Feldmann, J.; Nichtl, A.; Kurzinger, K. Nano Lett. 2003, 3, 935. doi: 10.1021/nl034223+  doi: 10.1021/nl034223+

    28. [28]

      Nusz, G. J.; Marinakos, S. M.; Curry, A. C.; Dahlin, A.; Hook, F.; Wax, A.; Chilkoti, A. Anal. Chem. 2008, 80, 984. doi: 10.1021/ac7017348  doi: 10.1021/ac7017348

    29. [29]

      Barbillon, G.; Bijeon, J. L.; Bouillard, J. S.; Plain, J.; De la Chapelle, M. L.; Adam, P. M.; Royer, P. J. Microscopy 2008, 229, 270. doi: 10.1111/j.1365-2818.2008.01898.x  doi: 10.1111/j.1365-2818.2008.01898.x

    30. [30]

      Xiong, B.; Huang, Z. R.; Zou, H. Y.; Qiao, C. Y.; He, Y.; Yeung, E. S. ACS Nano 2017, 11(1), 541. doi: 10.1021/acsnano.6b06591  doi: 10.1021/acsnano.6b06591

    31. [31]

      Lee, K. H.; Huang, K. M.; Tseng, W. L.; Chiu, T. C.; Lin, Y. W.; Chang, H. T. Langmuir 2007, 23, 1435. doi: 10.1021/la061880j  doi: 10.1021/la061880j

    32. [32]

      Qu, X. M.; Zhu, D.; Yao, G. B.; Su, S.; Chao, J.; Liu, H. J.; Zuo, X. L.; Wang L. H.; Shi, J. Y.; Wang, L. H.; et al. Angew. Chem. Int. Ed. 2017, 56, 1855. doi: 10.1002/ange.201611777  doi: 10.1002/ange.201611777

    33. [33]

      Chen, Q. S.; Liu, H. J.; Lee, W.; Sun, Y. Z.; Zhu, D.; Pei, H.; Fan, C. H.; Fan, X. D. Lab Chip 2013, 13, 3351. doi: 10.1039/c3lc50629k  doi: 10.1039/c3lc50629k

    34. [34]

      Qu, X. M.; Wang, S. P.; Ge, Z. L.; Wang, J. B.; Yao, G. B.; Li, J.; Zuo, X. L.; Shi, J. Y.; Song, S. P.; Wang, L. H.; et al. J. Am. Chem. Soc. 2017, 139, 10176. doi: 10.1021/jacs.7b04040  doi: 10.1021/jacs.7b04040

    35. [35]

      Zhu, D.; Song, P.; Shen, J. W.; Su, S.; Chao, J.; Aldalbahi, A.; Zhou, Z.; Song, S. P.; Fan, C. H.; Zuo, X. L.; et al. Anal. Chem. 2016, 88, 4949. doi: 10.1021/acs.analchem.6b00891  doi: 10.1021/acs.analchem.6b00891

    36. [36]

      Yao, G. B.; Pei, H.; Li, J.; Zhao, Y.; Zhu, D.; Zhang, Y. N.; Lin, Y. F.; Huang, Q.; Fan, C. NPG Asia Mater. 2015, 7, e159. doi: 10.1038/am.2014.131  doi: 10.1038/am.2014.131

    37. [37]

      Chen, L. Z.; Chao, J.; Qu, X. M.; Zhang, H. B.; Zhu, D.; Su, S.; Aldalbahi, A.; Wang, L. H.; Pei, H. ACS Appl. Mater. Interfaces 2017, 9, 8014. doi: 10.1021/acsami.6b16764  doi: 10.1021/acsami.6b16764

  • 加载中
    1. [1]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    11. [11]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    15. [15]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(12)
  • Abstract views(717)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return