Citation: XU Xiangyu, LIAO Yanqing, SUN Jianchuan, WANG Xuhui, CHEN Shuaiqi, LV Zhi, SONG Jiaqing. Removal of Fluorides from Aqueous Solutions Using Fresh and Regenerated Activated Alumina[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 317-326. doi: 10.3866/PKU.WHXB201805021 shu

Removal of Fluorides from Aqueous Solutions Using Fresh and Regenerated Activated Alumina

  • Corresponding author: SONG Jiaqing, songjq@126.com
  • Received Date: 23 March 2018
    Revised Date: 25 April 2018
    Accepted Date: 25 April 2018
    Available Online: 2 March 2018

    Fund Project: The project was supported from Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, China (H2016107)Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, China H2016107

  • Fluoride contamination of water is a problem worldwide and has caused great concern. Our study focused on the removal of fluorides from aqueous solutions using newly prepared and regenerated activated alumina. To obtain a suitable adsorbent, industrial boehmite was calcined from 573 K to 1473 K and the sample was characterized. The X-ray diffraction patterns showed that the sample was transformed to γ-alumina (activated alumina) at temperatures from 773 K to 1173 K, and the BET dates showed that the specific surface area of the sample decreased gradually from the temperature of 773 K to 1173 K. In our study, the activated alumina calcined from 773 K to 973 K was selected as the defluoridation adsorbent, and dynamic adsorption was employed for the removal of fluorides from aqueous solutions. The breakthrough curves demonstrated that the adsorption capacity of the adsorbent decreased with increasing calcination temperature. To investigate the effect of initial fluoride concentration on the adsorption capacity, 15 mg·L-1, 20 mg·L-1, and 25 mg·L-1 fluoride solutions were selected as the initial aqueous fluoride solution. As a result, the capacity of the adsorbent increased gradually with the increase in the initial fluoride concentration. In order to improve the capacity, we also studied the regeneration process in our experiment. When the activated alumina was saturated by the fluorides, it was regenerated with a NaOH solution (pH = 13.0, 13.3, 13.5) and activated with a HCl solution (0.1 mol·L-1). By a comparison of the five desorption and Al3+ dissolution rates during the regeneration process, it was determined that the NaOH solution with pH 13.0 was the most suitable desorption agent. An analysis of the nitrogen adsorption-desorption isotherm showed that its sharpness was almost unchanged after regeneration, which indicated that the pore structure of the adsorbent was not destroyed during this process. The change in the specific surface area and isoelectric point for the five-times regenerated adsorbent were important impact factors for fluoride adsorption. The specific surface area of the regenerated adsorbent increased, and the study of the zeta potential demonstrated that the isoelectric point also increased after regeneration. To observe the adsorption effect of regenerated activated alumina, we performed an adsorption experiment after each regeneration. The breakthrough curves demonstrated that the regenerated activated alumina exhibited faster saturation and increased adsorption capacity compared to fresh activated alumina. To elucidate the adsorption mechanism, IR spectroscopy was employed to characterize the O―H band of the adsorbent. The change in the Al―O―H content of the activated alumina during regeneration was the main factor impacting the fluoride adsorption capacity of the activated alumina.
  • 加载中
    1. [1]

      WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011.

    2. [2]

      Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y. J. Hazard. Mater. 2009, 164 (1), 271. doi: 10.1016/j.jhazmat.2008.08.011  doi: 10.1016/j.jhazmat.2008.08.011

    3. [3]

      Samarghandi, M. R.; Khiadani, M.; Foroughi, M.; Nasab, H. Z. Environ. Sci. Pollut. Res. 2016, 23 (1), 887. doi: 10.1007/s11356-015-5293-x  doi: 10.1007/s11356-015-5293-x

    4. [4]

      Yi, Q.; Ge, L.; Cheng, Y.; Dong, H.; Liu, K.; Zhang, J.; Yue, C. J. Groundwater Sci. Eng. 2015, 3 (2), 176.

    5. [5]

      Jagtap, S.; Yenkie, M. K.; Labhsetwar, N.; Rayalu, S. Chem. Rev. 2012, 112 (4), 2454. doi: 10.1021/cr2002855  doi: 10.1021/cr2002855

    6. [6]

      Sivasankar, V. S. Surface Modified Carbons as Scavengers for Fluoride from Water; Springer: Switzerland; 2016.

    7. [7]

      Chinnakoti, P.; Chunduri, A. L. A.; Vankayala, R. K.; Patnaik, S.; Kamisetti, V. Appl. Water Sci. 2017, 7 (5), 2413. doi: 10.1007/s13201-016-0437-9  doi: 10.1007/s13201-016-0437-9

    8. [8]

      Duan, Y.; Wang, C.; Li, X.; Xu, W. J. Water Health. 2014, 12 (4), 715. doi: 10.2166/wh.2014.016  doi: 10.2166/wh.2014.016

    9. [9]

      Zhu, B.; Jia, Y.; Jin, Z.; Sun, B.; Luo, T.; Kong, L.; Liu, J. RSC Adv. 2015, 5 (103), 84389. doi: 10.1039/C5RA15619J  doi: 10.1039/C5RA15619J

    10. [10]

      Arora, M.; Maheshwari, R. C.; Jain, S. K.; Gupta, A. Desalination 2004, 170 (2), 105. doi: 10.1016/j.desal.2004.02.096  doi: 10.1016/j.desal.2004.02.096

    11. [11]

      Amor, Z.; Bariou, B.; Mameri, N.; Taky, M.; Nicolas, S.; Elmidaoui, A. Desalination 2001, 133 (3), 215. doi: 10.1016/S0011-9164(01)00102-3  doi: 10.1016/S0011-9164(01)00102-3

    12. [12]

      Hichour, M.; Persin, F. O.; Sandeaux, J.; Gavach, C. Sep. Purif. Technol. 1999, 18 (1), 1. doi: 10.1016/S1383-5866(99)00042-8  doi: 10.1016/S1383-5866(99)00042-8

    13. [13]

      Nasr, A. B.; Charcosset, C.; Amar, R. B.; Walha, K. J. Fluorine Chem. 2013, 150, 92. doi: 10.1016/j.jfluchem.2013.01.021  doi: 10.1016/j.jfluchem.2013.01.021

    14. [14]

      Ghosh, D.; Medhi, C. R.; Purkait, M. K. Chemosphere 2008, 73 (9), 1393. doi: 10.1016/j.chemosphere.2008.08.041  doi: 10.1016/j.chemosphere.2008.08.041

    15. [15]

      Meenakshi, S.; Viswanathan, N. J. Colloid Interface Sci. 2007, 308 (2), 438. doi: 10.1016/j.jcis.2006.12.032  doi: 10.1016/j.jcis.2006.12.032

    16. [16]

      Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. J. Hazard. Mater. 2013, 248-249, 1. doi: 10.1016/j.jhazmat.2012.12.043  doi: 10.1016/j.jhazmat.2012.12.043

    17. [17]

      Habuda-Stanić, M.; Ravančić, M.; Flanagan, A. Materials 2014, 7 (9), 6317. doi: 10.3390/ma7096317  doi: 10.3390/ma7096317

    18. [18]

      Maliyekkal, S. M.; Sharma, A. K.; Philip, L. Water Res. 2006, 40 (19), 3497. doi: 10.1016/j.watres.2006.08.007  doi: 10.1016/j.watres.2006.08.007

    19. [19]

      Mondal, P.; George, S. Rev. Environ. Sci. Bio/Technol. 2015, 14 (2), 195. doi: 10.1007/s11157-014-9356-0  doi: 10.1007/s11157-014-9356-0

    20. [20]

      Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fewtrell, L.; Magara, Y. Fluoride in Drinking-Water; WHO Press: Geneva, Switzerland, 2006.

    21. [21]

      Wang, S.; Ma, Y.; Shi, Y.; Gong, W. J. Chem. Technol. Biotechnol. 2009, 84 (7), 1043. doi: 10.1002/jctb.2131  doi: 10.1002/jctb.2131

    22. [22]

      Dash, K.; Hareesh, U. S.; Johnson, R.; Arunachalam, J. Water Pract. Technol. 2010, 5 (3), 1. doi: 10.2166/WPT.2010.061  doi: 10.2166/WPT.2010.061

    23. [23]

      Gong, W.; Qu, J.; Liu, R.; Lan, H. Chem. Eng. J. 2012, 189-190, 126. doi: 10.1016/j.cej.2012.02.041  doi: 10.1016/j.cej.2012.02.041

    24. [24]

      Deng, S. B.; Yu, G. Environmental Adsorption Material and Its Application Principle; Science Press: Beijing, 2012.

    25. [25]

      Prabhu, S. M.; Subaramanian, M.; Meenakshi, S. Chem. Eng. J. 2016, 283, 1081. doi: 10.1016/j.cej.2015.08.005  doi: 10.1016/j.cej.2015.08.005

    26. [26]

      Liu, R.; Gong, W.; Lan, H.; Gao, Y.; Liu, H.; Qu, J. Chem. Eng. J. 2011, 175, 144. doi: 10.1016/j.cej.2011.09.083  doi: 10.1016/j.cej.2011.09.083

    27. [27]

      Gai, W.; Deng, Z.; Shi, Y. RSC Adv. 2015, 5 (102), 84223. doi: 10.1039/C5RA14706A  doi: 10.1039/C5RA14706A

    28. [28]

      Jia, Y.; Zhu, B.; Jin, Z.; Sun, B.; Luo, T.; Yu, X.; Kong, L.; Liu, J. J. Colloid Interface Sci. 2015, 440, 60. doi: 10.1016/j.jcis.2014.10.069  doi: 10.1016/j.jcis.2014.10.069

    29. [29]

      Nur, T.; Loganathan, P.; Nguyen, T. C.; Vigneswaran, S.; Singh, G.; Kandasamy, J. Chem. Eng. J. 2014, 247, 93. doi: 10.1016/j.cej.2014.03.009  doi: 10.1016/j.cej.2014.03.009

    30. [30]

      Niu, B. J.; Ding, W. M.; Dang, D. Appl. Mech. Mater. Trans Technol. Pub. 2013, 316, 653. doi: 10.1109/ICETCE.2012.508  doi: 10.1109/ICETCE.2012.508

    31. [31]

      Ghorai, S.; Pant, K. K. Sep. Purif. Technol. 2005, 42 (3), 265. doi: 10.1016/j.seppur.2004.09.001  doi: 10.1016/j.seppur.2004.09.001

    32. [32]

      Ghorai, S.; Pant, K. K. Chem. Eng. J. 2004, 98 (1-2), 165. doi: 10.1016/j.cej.2003.07.003  doi: 10.1016/j.cej.2003.07.003

    33. [33]

      Kumar, E.; Bhatnagar, A.; Kumar, U.; Sillanpää, M. J. Hazard. Mater. 2011, 186 (2-3), 1042. doi: 10.1016/j.jhazmat.2010.11.102  doi: 10.1016/j.jhazmat.2010.11.102

    34. [34]

      Mohan, S.; Singh, D. K.; Kumar, V.; Hasan, S. H. J. Fluor. Chem. 2017, 194, 40. doi: 10.1016/j.jfluchem.2016.12.014  doi: 10.1016/j.jfluchem.2016.12.014

    35. [35]

      Sing, K. Pure Appl. Chem. 1984, 57 (4), 603. doi: 10.1351/pac198557040603  doi: 10.1351/pac198557040603

    36. [36]

      Jin, Z.; Jia, Y.; Luo, T.; Kong, L.; Sun, B.; Shen, W.; Meng, F.; Liu, J. Appl. Surf. Sci. 2015, 357, 1080. doi: 10.1016/j.apsusc.2015.09.127  doi: 10.1016/j.apsusc.2015.09.127

    37. [37]

      Tangsir, S.; Hafshejani, L. D.; Lähde, A.; Maljanen, M.; Hooshmand, A.; Naseri, A. A.; Moazed, H.; Jokiniemi, J.; Bhatnagar, A. Chem. Eng. J. 2016, 288, 198. doi: 10.1016/j.cej.2015.11.097  doi: 10.1016/j.cej.2015.11.097

    38. [38]

      Jia, Y.; Zhu, B.; Zhang, K.; Jin, Z.; Sun, B.; Luo, T.; Yu, X.; Kong, L.; Liu, J. Chem. Eng. J. 2015, 268, 325. doi: 10.1016/j.cej.2015.01.080  doi: 10.1016/j.cej.2015.01.080

  • 加载中
    1. [1]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    2. [2]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    3. [3]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    4. [4]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    5. [5]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    6. [6]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    7. [7]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    8. [8]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    9. [9]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    10. [10]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    11. [11]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    12. [12]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

Metrics
  • PDF Downloads(8)
  • Abstract views(414)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return