Citation: XUE Peiyao, ZHANG Junxiang, XIN Jingming, RECH Jeromy, LI Tengfei, MENG Kaixin, WANG Jiayu, MA Wei, YOU Wei, MARDER Seth R., HAN Ray P. S., ZHAN Xiaowei. Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 275-283. doi: 10.3866/PKU.WHXB201804231 shu

Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells

  • Corresponding author: HAN Ray P. S., ray-han@pku.edu.cn ZHAN Xiaowei, xwzhan@pku.edu.cn
  • Received Date: 29 March 2018
    Revised Date: 17 April 2018
    Accepted Date: 18 April 2018
    Available Online: 23 March 2018

    Fund Project: the Ministry of Science and Technology, China 2016YFA0200700the Department of the Navy, U.S. N00014-16-1-2520The project was supported by the National Natural Science Foundation of China (21734001, 51761165023, 21504066, 21534003), the Department of the Navy, U.S. (N00014-14-1-0580, N00014-16-1-2520), the Ministry of Science and Technology, China (2016YFA0200700) and the Natural Science Foundation, U.S. (DMR-1507249, CBET-1639429)the Natural Science Foundation, U.S. DMR-1507249the Natural Science Foundation, U.S. CBET-1639429the National Natural Science Foundation of China 51761165023the National Natural Science Foundation of China 21534003the Department of the Navy, U.S. N00014-14-1-0580the National Natural Science Foundation of China 21504066the National Natural Science Foundation of China 21734001

  • Ternary blends have been considered as an effective approach to improve power conversion efficiency (PCE) of organic solar cells (OSCs). Among them, the fullerene-containing ternary OSCs have been studied extensively, and their PCEs are as high as over 14%. However, all non-fullerene acceptor ternary OSCs are still limited by their relatively lower PCEs. In this work, we used wide-bandgap benzodithiophene-difluorobenzotriazole copolymer FTAZ as the donor, low-bandgap fused-ring electron acceptor (FREA), fused tris(thieno- thiophene) end-capped by fluorinated 1, 1-dicyanomethylene-3-indanone (FOIC) as acceptor, and two medium-bandgap FREAs, indaceno-dithiophene end- capped by 1, 1-dicyanomethylene-3-indanone (IDT-IC) and indacenodithiophene end-capped by 1, 1-dicyanomethylene-3-benzoindanone (IDT-NC), as the third components to fabricate the ternary blends FTAZ:FOIC:IDT-IC and FTAZ:FOIC:IDT-NC, and investigated the effects of the third components on the performance of ternary OSCs. Both IDT-IC and IDT-NC are based on the same indacenodithiophene core but contain different terminal groups (phenyl and naphthyl). Relative to IDT-IC with phenyl terminal groups, IDT-NC with naphthyl terminal groups has extended π-conjugation, down-shifted lowest unoccupied molecular orbital (LUMO), red-shifted absorption and higher electron mobility. The binary devices based on the FTAZ:FOIC, FTAZ:IDT-IC and FTAZ:IDT-NC blends exhibit PCEs of 9.73%, 7.48% and 7.68%, respectively. Compared with corresponding binary devices, both ternary devices based on FTAZ:FOIC:IDT-IC and FTAZ:FOIC:IDT-NC exhibit better photovoltaic performances. When the IDT-IC weight ratio in acceptors is 50%, the FTAZ:FOIC:IDT-IC ternary devices exhibit the best PCE of 11.2%. The ternary-blend OSCs yield simultaneously improved open-circuit voltage (VOC), short-circuit current density (JSC) and fill factor (FF) compared with the binary devices based on FTAZ:FOIC. The higher VOC is attributed to the higher LUMO energy level of IDT-IC compared with FOIC. The improved JSC is attributed to the complementary absorption of FOIC and IDT-IC. The introduction of IDT-IC improves blend morphology and charge transport, leading to higher FF. The FTAZ:FOIC:IDT-NC system yields a higher PCE of 10.4% relative to the binary devices based on FTAZ:FOIC as the active layer. However, the PCE of the FTAZ:FOIC:IDT-NC-based ternary devices is lower than that of the FTAZ:FOIC:IDT-IC-based ternary devices. Compared with the binary devices based on FTAZ:FOIC, in FTAZ:FOIC:IDT-NC-based ternary devices, as the ratio of the third component increases, the VOC increases due to the higher LUMO energy level of IDT-NC, the FF increases due to optimized morphology and improved charge transport, while the JSC decreases due to the overlapped absorption of FOIC and IDT-NC. The terminal groups in the third components affect the performance of the ternary OSCs. The lower LUMO. energy level of IDT-NC is responsible for the lower VOC of the FTAZ:FOIC:IDT-NC devices. The red-shifted absorption of IDT-NC leads to the overlapping of the absorption spectra of IDT-NC and FOIC and lower JSC. On the other hand, replacing the phenyl terminal groups by the naphthyl terminal groups influences the π-π packing and charge transport. The FTAZ:FOIC:IDT-NC blend exhibits higher electron mobility and more balanced charge transport than FTAZ:FOIC:IDT-IC, leading to a higher FF.
  • 加载中
    1. [1]

      Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868. doi: 10.1021/cr900182s  doi: 10.1021/cr900182s

    2. [2]

      Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11  doi: 10.1038/nphoton.2012.11

    3. [3]

      Lin, Y. Z.; Li, Y. F.; Zhan, X. W. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/c2cs15313k  doi: 10.1039/c2cs15313k

    4. [4]

      Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Alexander, M. S.; Zhao, D. L.; Yu, L. P. Chem. Rev. 2015, 115, 12666. doi: 10.1021/acs.chemrev.5b00098  doi: 10.1021/acs.chemrev.5b00098

    5. [5]

      Li, Y. W.; Xu, G. Y.; Cui, C. H.; Li, Y. F. Adv. Mater. 2017, 8, 1701791. doi: 10.1002/aenm.201701791  doi: 10.1002/aenm.201701791

    6. [6]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    7. [7]

      Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498. doi: 10.1038/376498a0  doi: 10.1038/376498a0

    8. [8]

      Zhao, J. B.; Li, Y. K.; Yang, G. F.; Jiang, K.; Lin, H. R.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027. doi: 10.1038/Nenergy.2015.27  doi: 10.1038/Nenergy.2015.27

    9. [9]

      Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim. J. H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K.; et al. Nat. Mater. 2018, 17, 253. doi: 10.1038/s41563-017-0005-1  doi: 10.1038/s41563-017-0005-1

    10. [10]

      Yan, C. Q.; Barlow, S.; Wang, Z. H.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. W. Nat. Rev. Mater. 2018, 3, 18003. doi: 10.1038/natrevmats.2018.3  doi: 10.1038/natrevmats.2018.3

    11. [11]

      Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Nat. Photon. 2018, 12, 131. doi: 10.1038/s41566-018-0104-9  doi: 10.1038/s41566-018-0104-9

    12. [12]

      Zhan, X. W.; Tan, Z. A.; Domercq, B.; An, Z. S.; Zhang, X.; Barlow, S.; Li, Y. F.; Zhu, D. B.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246. doi: 10.1021/ja071760d  doi: 10.1021/ja071760d

    13. [13]

      Zhong, Y.; Trinh, M. T.; Chen, R. S.; Purdum, G. E.; Khlyabich, P. P.; Sezen, M.; Oh, S.; Zhu, H. M.; Fowler, B.; Zhang, B. Y.; et al. Nat. Commun. 2015, 6, 8242. doi: 10.1038/ncomms9242  doi: 10.1038/ncomms9242

    14. [14]

      Zhang, J. Q.; Li, Y. K.; Huang, J. C.; Hu, H. W.; Zhang, G. Y.; Ma, T. X.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H. J. Am. Chem. Soc. 2017, 139, 16092. doi: 10.1021/jacs.7b09998  doi: 10.1021/jacs.7b09998

    15. [15]

      Meng, D.; Sun, D.; Zhong, C. M.; Liu, T.; Fan, B. B.; Huo, L. J.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; et al. J. Am. Chem. Soc. 2016, 138, 375. doi: 10.1021/jacs.5b11149  doi: 10.1021/jacs.5b11149

    16. [16]

      Meng, D.; Fu, H. T.; Xiao, C. Y.; Meng, X. Y.; Winands, T.; Ma, W.; Wei, W.; Fan, B. B.; Huo, L. J.; Doltsinis, N. L.; et al. J. Am. Chem. Soc. 2016, 138, 10184. doi: 10.1021/jacs.6b04368  doi: 10.1021/jacs.6b04368

    17. [17]

      Hartnett, P. E.; Timalsina, A.; Matte, H. S. S. R.; Zhou, N. J.; Guo, X. G.; Zhao, W.; Facchetti, A.; Chang, R. P. H.; Hersam, M. C.; Wasielewski, M. R.; et al. J. Am. Chem. Soc. 2014, 136, 16345. doi: 10.1021/ja508814z  doi: 10.1021/ja508814z

    18. [18]

      Wu, Q. H.; Zhao, D. L.; Schneider, A. M.; Chen, W.; Yu, L. P. J. Am. Chem. Soc. 2016, 138, 7248. doi: 10.1021/jacs.6b03562  doi: 10.1021/jacs.6b03562

    19. [19]

      Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    20. [20]

      Lin, Y. Z.; Li, T. F.; Zhao, F. W.; Han, L.; Wang, Z. Y.; Wu, Y.; He, Q.; Wang, J. Y.; Huo, L. J.; Sun, Y. M.; et al. Adv. Energy Mater. 2016, 6, 1600854. doi: 10.1002/aenm.201600854  doi: 10.1002/aenm.201600854

    21. [21]

      Dai, S. X.; Zhao, F. W.; Zhang, Q. Q.; Lau, T. K.; Li, T. F.; Liu, K.; Ling, Q. D.; Wang, C. R.; Lu, X. H.; You, W.; et al. J. Am. Chem. Soc. 2017, 139, 1336. doi: 10.1021/jacs.6b12755  doi: 10.1021/jacs.6b12755

    22. [22]

      Li, T. F.; Dai, S. X.; Ke, Z. F.; Yang, L. X.; Wang, J. Y.; Yan, C. Q.; Ma, W.; Zhan, X. W. Adv. Mater. 2018, 30, 1705969. doi: 10.1002/adma.201705969  doi: 10.1002/adma.201705969

    23. [23]

      Li, S. X.; Zhan, L. L.; Liu, F.; Ren, J.; Shi, M. M.; Li, C. Z.; Russell, T. P.; Chen, H. Z. Adv. Mater. 2017, 30, 1705208. doi: 10.1002/adma.201705208  doi: 10.1002/adma.201705208

    24. [24]

      Feng, S. Y.; Zhang, C. E; Liu, Y. H.; Bi, Z. Z.; Zhang, Z.; Xu, X. J.; Ma, W.; Bo, Z. S. Adv. Mater. 2017, 29, 1703527. doi: 10.1002/adma.201703527  doi: 10.1002/adma.201703527

    25. [25]

      Lin, Y. Z.; Zhao, F. W.; He, Q.; Huo, L. J.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y. M.; Wang, C. R.; Zhu, D. B.; et al. J. Am. Chem. Soc. 2016, 138, 4955. doi: 10.1021/jacs.6b02004  doi: 10.1021/jacs.6b02004

    26. [26]

      Wang, W.; Yan, C. Q.; Lau, T. K.; Wang, J. Y.; Liu, K.; Fan, Y.; Lu, X. H.; Zhan, X. W. Adv. Mater. 2017, 29, 1701308. doi: 10.1002/adma.201701308  doi: 10.1002/adma.201701308

    27. [27]

      Wang, J. Y.; Wang, W.; Wang, X. H.; Wu, Y.; Zhang, Q. Q.; Yan, C. Q.; Ma, W.; You, W.; Zhan, X. W. Adv. Mater. 2017, 29, 1702125. doi: 10.1002/adma.201702125  doi: 10.1002/adma.201702125

    28. [28]

      Jia, B. Y.; Dai, S. X.; Ke, Z. F.; Yan, C. Q.; Ma, W.; Zhan, X. W. Chem. Mater. 2017, 30, 239. doi: 10.1021/acs.chemmater.7b04251  doi: 10.1021/acs.chemmater.7b04251

    29. [29]

      Xu, S. J.; Zhou, Z. C.; Liu, W. Y.; Zhang, Z. B.; Liu, F.; Yan, H. P.; Zhu, X. Z. Adv. Mater. 2017, 29, 1704510. doi: 10.1002/adma.201704510  doi: 10.1002/adma.201704510

    30. [30]

      Zhao, F. W.; Dai, S. X.; Wu, Y.; Zhang, Q. Q.; Wang, J. Y.; Li, J.; Ling, Q.; Wei, Z. X.; Ma, W.; You, W.; et al. Adv. Mater. 2017, 29, 1700144. doi: 10.1002/adma.201700144  doi: 10.1002/adma.201700144

    31. [31]

      Zhu, J. S.; Ke, Z. F.; Zhang, Q. Q.; Wang, J. Y.; Dai, S. X.; Wu, Y.; Xu, Y.; Lin, Y. Z.; Ma, W.; You, W.; et al. Adv. Mater. 2017, 30, 1704713. doi: 10.1002/adma.201704713  doi: 10.1002/adma.201704713

    32. [32]

      Lin, Y. Z.; Zhao, F. W.; Prasad, S. K. K.; Chen, J. D.; Cai, W. Z.; Zhang, Q. Q.; Chen, K.; Wu, Y.; Ma, W.; Gao, F.; et al. Adv. Mater. 2018, 30, 1706363. doi: 10.1002/adma.201706363  doi: 10.1002/adma.201706363

    33. [33]

      Luo, Z. H.; Bin, H. J.; Liu, T.; Zhang, Z. G.; Yang, Y. K.; Zhong, C.; Qiu, B. B.; Li, G. H.; Gao, W.; Xie, D. J.; et al. Adv. Mater. 2018, 30, 1706124. doi: 10.1002/adma.201706124  doi: 10.1002/adma.201706124

    34. [34]

      Zhao, W. C.; Li, S. S.; Yao, H. F.; Zhang, S. Q.; Zhang, Y.; Yang, B.; Hou, J. H. J. Am. Chem. Soc. 2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    35. [35]

      Fei, Z. P.; Eisner, F. D.; Jiao, X. C.; Azzouzi, M.; Röhr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; et al. Adv. Mater. 2018, 30, 1705209. doi: 10.1002/adma.201705209  doi: 10.1002/adma.201705209

    36. [36]

      Zhang, Z. G.; Yang, Y. K.; Yao, J.; Xue, L. W.; Chen, S. S.; Li, X. J.; Morrison, W.; Yang, C.; Li, Y. F. Angew. Chem. Int. Ed. 2017, 56, 13503. doi: 10.1002/anie.201707678  doi: 10.1002/anie.201707678

    37. [37]

      Bin, H. J.; Yang Y. K.; Zhang, Z. G.; Ye, L.; Ghasemi, M.; Chen, S. S.; Zhang, Y. D.; Zhang, C. F.; Sun, C. K.; Xue, L. M.; et al. J. Am. Chem. Soc. 2017, 139, 5085. doi: 10.1021/jacs.6b12826  doi: 10.1021/jacs.6b12826

    38. [38]

      Deng, D.; Zhou, E. J.; Wei, Z. X. Acta Phys. -Chim. Sin. 2018, 34, 1239.  doi: 10.3866/PKU.WHXB201803272

    39. [39]

      Lu, L. Y.; Kelly, M. A.; You, W.; Yu, L. P. Nat. Photon. 2015, 9, 491. doi: 10.1038/Nphoton.2015.128  doi: 10.1038/Nphoton.2015.128

    40. [40]

      Huang, W. C.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. Adv. Mater. 2018, 9, 190. doi: 10.1002/adma.201705706  doi: 10.1002/adma.201705706

    41. [41]

      Xu, W. D.; Gao, F. Mater. Horiz. 2018, 5, 206. doi: 10.1039/C7MH00958E  doi: 10.1039/C7MH00958E

    42. [42]

      Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.; Jiang, K.; Lin, H. R.; Ade, H.; Yan, H. Nat. Commun. 2014, 5, 5293. doi: 10.1038/ncomms6293  doi: 10.1038/ncomms6293

    43. [43]

      Li, W.; Yan, Y.; Gong, Y. Y.; Cai, J. L.; Cai, F. L.; Gurney, R. S.; Liu, D.; Pearson, A. J.; Lidzey, D. G.; Wang, T. Adv. Funct. Mater. 2017, 28, 1704212. doi: 10.1002/adfm.201704212  doi: 10.1002/adfm.201704212

    44. [44]

      Zhong, W. K.; Cui, J.; Fan, B. B.; Ying, L.; Wang, Y.; Wang, X.; Zhang, G. C.; Jiang, X. F.; Huang, F.; Cao, Y. Chem. Mater. 2017, 29, 8177. doi: 10.1021/acs.chemmater.7b02228  doi: 10.1021/acs.chemmater.7b02228

    45. [45]

      Cheng, P.; Zhang, M. Y.; Lau, T. K.; Wu, Y.; Jia, B. Y.; Wang, J. Y.; Yan, C. Q.; Qin, M.; Lu, X. H.; Zhan, X. W. Adv. Mater. 2017, 29, 1605219. doi: 10.1002/adma.201605216  doi: 10.1002/adma.201605216

    46. [46]

      Cheng, P.; Zhan, X. W. Mater. Horiz. 2015, 2, 447. doi: 10.1039/c5mh00090d  doi: 10.1039/c5mh00090d

    47. [47]

      Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. J. Am. Chem. Soc. 2011, 133, 14534. doi: 10.1021/ja205977z  doi: 10.1021/ja205977z

    48. [48]

      Street, R. A.; Davies, D.; Khlyabich, P. P.; Burkhartart, B.; Thompson, B. C. J. Am. Chem. Soc. 2013, 135, 986. doi: 10.1021/ja3112143  doi: 10.1021/ja3112143

    49. [49]

      Dai, S. X.; Li, T. F.; Wang, W.; Xiao, Y. Q.; Lau, T. K.; Li, Z. Y.; Liu, K.; Lu, X. H; Zhan, X. W. Adv. Mater. 2018, 30, 1706571. doi: 10.1002/adma.201706571  doi: 10.1002/adma.201706571

    50. [50]

      Liu, T.; Guo, Y.; Yi, Y. P.; Huo, L. J.; Xue, X. N.; Sun, X. B.; Fu, H. T.; Xiong, W. T.; Meng, D.; Wang, Z. H.; et al. Adv. Mater. 2016, 28, 10008. doi: 10.1002/adma.201602570  doi: 10.1002/adma.201602570

    51. [51]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater. 2016, 16, 363. doi: 10.1038/nmat4797  doi: 10.1038/nmat4797

    52. [52]

      Zhang, T.; Zhao, X. L.; Yang, D. L.; Tian, Y. M.; Yang, X. N. Adv. Energy Mater. 2017, 7, 1701691. doi: 10.1002/aenm.201701691  doi: 10.1002/aenm.201701691

    53. [53]

      Cheng, P.; Yan, C. Q.; Wu, Y.; Wang, J. Y.; Qin, M.; An, Q. S.; Cao, J. M.; Huo, L. J.; Zhang, F. J.; Ding, L. M.; et al. Adv. Mater. 2016, 28, 8021. doi: 10.1002/adma.201602067  doi: 10.1002/adma.201602067

    54. [54]

      Xiao, Z.; Jia, X.; Ding, L. M. Chin. Sci. Bull. 2017, 62, 1562. doi: 10.1016/j.scib.2017.11.003  doi: 10.1016/j.scib.2017.11.003

    55. [55]

      Zhang, J. Q.; Zhang, Y. J.; Fang, J.; Lu, K.; Wang, Z. Y.; Ma, W.; Wei, Z. X. J. Am. Chem. Soc. 2017, 137, 8176. doi: 10.1021/jacs.5b03449  doi: 10.1021/jacs.5b03449

    56. [56]

      Zhang, J. X.; Yan, C. Q.; Wang, W.; Xiao, Y. Q.; Lu, X. H.; Barlow, S.; Parker, T. C.; Zhan, X. W.; Marder, S. R. Chem. Mater. 2018, 30, 309. doi: 10.1021/acs.chemmater.7b04499  doi: 10.1021/acs.chemmater.7b04499

    57. [57]

      Li, S. S.; Ye, L.; Zhao, W. C.; Liu, X. Y.; Zhu, J.; Ade, H.; Hou, J. H. Adv. Mater. 2017, 29, 1704501. doi: 10.1002/adma.201704051  doi: 10.1002/adma.201704051

    58. [58]

      Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J. Am. Chem. Soc. 2011, 133, 4625. doi: 10.1021/ja1112595  doi: 10.1021/ja1112595

    59. [59]

      Schilinsky, P.; Waldauf, C.; Brabec, C. J. Appl. Phys. Lett. 2002, 81, 3885. doi: 10.1063/1.1521244  doi: 10.1063/1.1521244

    60. [60]

      Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. J. Phys. Conf. Ser. 2010, 247, 012007. doi: 10.1088/1742-6596/247/1/012007  doi: 10.1088/1742-6596/247/1/012007

    61. [61]

      Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C. Rev. Sci. Instrum. 2012, 83, 045110. doi: 10.1063/1.3701831  doi: 10.1063/1.3701831

    62. [62]

      Wu, Y.; Wang, Z. Y.; Meng, X. Y.; Ma, W. Prog. Chem. 2017, 2, 93. doi: 10.7536/PC160444  doi: 10.7536/PC160444

    63. [63]

      Zhang, L.; Ma, W. Chin. J. Polym. Sci. 2017, 35, 184. doi: 10.1007/s10118-017-1898-5  doi: 10.1007/s10118-017-1898-5

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    3. [3]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    6. [6]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    7. [7]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    8. [8]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    9. [9]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    10. [10]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    11. [11]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    12. [12]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    13. [13]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    14. [14]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    15. [15]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    16. [16]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    17. [17]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    18. [18]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    19. [19]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    20. [20]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

Metrics
  • PDF Downloads(12)
  • Abstract views(627)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return