Citation: WANG Hengwei, LU Junling. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1334-1357. doi: 10.3866/PKU.WHXB201804201 shu

Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst


  • Author Bio:
    Prof. LU Junling received his PhD degree from Institute of Physics, Chinese Academy of Sciences under the supervision of Prof. Hongjun Gao in 2007. During his PhD studies, he visited Prof. Hans-Joachim Freund group at Chemical Physics Department, Fritz-Haber-Institute, Max Planck Society as an exchange student in 2004-2006. After graduation, he spent three years in Prof. Peter C Stair's group at Northwestern University and then about two and a half years in Dr. Jeffrey W. Elam's group at Argonne National Laboratory as a Postdoc. In March. 2013, he became a professor at University of Science and Technology of China. His current research interest is atomically-precise design of new catalytic materials using a combined wet-chemistry and atomic layer deposition (ALD) approach for advanced catalysis
  • Corresponding author: LU Junling, junling@ustc.edu.cn
  • Received Date: 27 March 2018
    Revised Date: 15 April 2018
    Accepted Date: 16 April 2018
    Available Online: 23 December 2018

    Fund Project: the Fundamental Research Funds for the Central Universities, China WK2060030029the National Natural Science Foundation of China 21473169the National Natural Science Foundation of China 51402283The project was supported by the National Natural Science Foundation of China (21673215, 21473169, 51402283), the Fundamental Research Funds for the Central Universities, China (WK2060030029, WK6030000015), and the Max-Planck Partner Groupthe National Natural Science Foundation of China 21673215the Fundamental Research Funds for the Central Universities, China WK6030000015

  • Heterogeneous catalysts are usually synthesized by the conventional wet-chemistry methods, including wet-impregnation, ion exchange, and deposition-precipitation. With the development of catalyst synthesis, great progress has been made in many industrially important catalytic processes. However, these catalytic materials often have very complex structures along with poor uniformity of active sites. Such heterogeneity of active site structures significantly decreases catalytic performance, especially in terms of selectivity, and hinders atomic-level understanding of structure-activity relationships. Moreover, loss of exposed active components by sintering or leaching under harsh reaction conditions causes considerable catalyst deactivation. It is desirable to develop a facile method to tune catalyst active site structures, as well as their local chemical environments on the atomic level, thereby facilitating reaction mechanisms understanding and rational design of catalysts with high stability. Atomic layer deposition (ALD), a gas-phase technique for thin film growth, has emerged as an alternative method to synthesize heterogeneous catalysts. Like chemical vapor deposition (CVD), ALD relies on a sequence of molecular-level, self-limiting surface reactions between the vapors of precursor molecules and a substrate. This unique character makes it possible to deposit various catalytic materials uniformly on a high-surface-area support with nearly atomic precision. By tuning the number, sequence, and types of ALD cycles, bottom-up precise construction of catalytic architectures on a support can be achieved. In this review, we focus on the design and synthesis of supported metal catalysts using ALD. We first review strategies developed to precisely tailor the size, composition, and structures of metal nanoparticles (NPs) using ALD. Catalytic performances of these ALD metal catalysts are also discussed and compared to conventional catalysts. We highlight synthetic strategies for synthesis of metal single-atom catalysts and bottom-up precise synthesis of dimeric metal catalysts. Their impact on catalysis is discussed. We demonstrate that metal oxide ALD on metal NPs can enhance catalytic activity, selectivity, and especially stability. In particular, we show that site-selective blocking of metal NPs with an oxide overcoat improves selectivity and contributes to an understanding of the distinct functionalities of the low-and high-coordination sites in catalytic reactions on the atomic level. Next, we discuss an effective method to construct bifunctional catalysts via precisely-controlled addition of a secondary functionality using ALD. Finally, we summarize the advantages of ALD for the advanced design and synthesis of catalysts and discuss the challenges and opportunities of scaling up ALD catalyst synthesis for practical applications.
  • 加载中
    1. [1]

      Bartholomew, C. H.; Farrauto, R. J. Fundamentals of Industrial Catalytic Processes, 2nd ed.; Wiley: Hoboken, N.J., 2006; p. 4.

    2. [2]

      Schwartz, T. J.; O'Neill, B. J.; Shanks, B. H.; Dumesic, J. A. ACS Catal. 2014, 4, 2060. doi: 10.1021/cs500364y  doi: 10.1021/cs500364y

    3. [3]

      Zaera, F. Catal. Lett. 2012, 142, 501. doi: 10.1007/s10562-012-0801-9  doi: 10.1007/s10562-012-0801-9

    4. [4]

      Thomas, J. M.; Harris, K. D. M. Energy Environ. Sci. 2016, 9, 687. doi: 10.1039/c5ee03461b  doi: 10.1039/c5ee03461b

    5. [5]

      Deutschmann, O. ; Knözinger, H. ; Kochloefl, K. ; Turek, T. Heterogeneous Catalysis and Solid Catalysts. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2009.

    6. [6]

      O'Neill, B. J.; Jackson, D. H. K.; Lee, J.; Canlas, C.; Stair, P. C.; Marshall, C. L.; Elam, J. W.; Kuech, T. F.; Dumesic, J. A.; Huber, G. W. ACS Catal. 2015, 5, 1804. doi: 10.1021/cs501862h  doi: 10.1021/cs501862h

    7. [7]

      Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Acc. Chem. Res. 2013, 46, 1673. doi: 10.1021/ar300225s  doi: 10.1021/ar300225s

    8. [8]

      Schwarz, J. A.; Contescu, C.; Contescu, A. Chem. Rev. 1995, 95, 477. doi: 10.1021/Cr00035a002  doi: 10.1021/Cr00035a002

    9. [9]

      Munnik, P.; de Jongh, P. E.; de Jong, K. P. Chem. Rev. 2015, 115, 6687. doi: 10.1021/cr500486u  doi: 10.1021/cr500486u

    10. [10]

      Wrobleski, J. T.; Boudart, M. Catal. Today 1992, 15, 349. doi: 10.1016/0920-5861(92)85002-4  doi: 10.1016/0920-5861(92)85002-4

    11. [11]

      Liu, Y. X.; Zhao, G. F.; Wang, D. S.; Li, Y. D. Natl. Sci. Rev. 2015, 2, 150. doi: 10.1093/nsr/nwv014  doi: 10.1093/nsr/nwv014

    12. [12]

      Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Chem. Soc. Rev. 2011, 40, 4167. doi: 10.1039/c0cs00176g  doi: 10.1039/c0cs00176g

    13. [13]

      Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 4630. doi: 10.1002/anie.200603148  doi: 10.1002/anie.200603148

    14. [14]

      Liu, P. X.; Qin, R. X.; Fu, G.; Zheng, N. F. J. Am. Chem. Soc. 2017, 139, 2122. doi: 10.1021/jacs.6b10978  doi: 10.1021/jacs.6b10978

    15. [15]

      Marshall, S. T.; O'Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Nat. Mater. 2010, 9, 853. doi: 10.1038/nmat2849  doi: 10.1038/nmat2849

    16. [16]

      Lu, J. L.; Elam, J. W.; Stair, P. C. Acc. Chem. Res. 2013, 46, 1806. doi: 10.1021/ar300229c  doi: 10.1021/ar300229c

    17. [17]

      Ahonen, M.; Pessa, M.; Suntola, T. Thin Solid Films 1980, 65, 301. doi: 10.1016/0040-6090(80)90240-0  doi: 10.1016/0040-6090(80)90240-0

    18. [18]

      George, S. M. Chem. Rev. 2010, 110, 111. doi: 10.1021/cr900056b  doi: 10.1021/cr900056b

    19. [19]

      Puurunen, R. L. J. Appl. Phys. 2005, 97, 121301. doi: 10.1063/1.1940727  doi: 10.1063/1.1940727

    20. [20]

      Elam, J. W.; Sechrist, Z. A.; George, S. M. Thin Solid Films 2002, 414, 43. doi: 10.1016/S0040-6090(02)00427-3  doi: 10.1016/S0040-6090(02)00427-3

    21. [21]

      Ritala, M.; Leskela, M.; Dekker, J. P.; Mutsaers, C.; Soininen, P. J.; Skarp, J. Chem. Vap. Deposition 1999, 5, 7. doi: 10.1002/(Sici)1521-3862(199901)5:1<7::Aid-Cvde7>3.0.Co;2-J  doi: 10.1002/(Sici)1521-3862(199901)5:1<7::Aid-Cvde7>3.0.Co;2-J

    22. [22]

      Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E. Nat. Mater. 2011, 10, 456. doi: 10.1038/NMAT3017  doi: 10.1038/NMAT3017

    23. [23]

      Coll, M.; Gazquez, J.; Palau, A.; Varela, M.; Obradors, X.; Puig, T. Chem. Mater. 2012, 24, 3732. doi: 10.1021/cm301864c  doi: 10.1021/cm301864c

    24. [24]

      Pagan-Torres, Y. J.; Gallo, J. M. R.; Wang, D.; Pham, H. N.; Libera, J. A.; Marshall, C. L.; Elam, J. W.; Datye, A. K.; Dumesic, J. A. ACS Catal. 2011, 1, 1234. doi: 10.1021/cs200367t  doi: 10.1021/cs200367t

    25. [25]

      Yang, J. H.; Walczak, K.; Anzenberg, E.; Toma, F. M.; Yuan, G. B.; Beeman, J.; Schwartzberg, A.; Lin, Y. J.; Hettick, M.; Javey, A.; et al. J. Am. Chem. Soc. 2014, 136, 6191. doi: 10.1021/ja501513t  doi: 10.1021/ja501513t

    26. [26]

      Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Science 2014, 344, 1005. doi: 10.1126/science.1251428  doi: 10.1126/science.1251428

    27. [27]

      Lu, J.; Elam, J. W.; Stair, P. C. Surf. Sci. Rep. 2016, 71, 410. doi: 10.1016/j.surfrep.2016.03.003  doi: 10.1016/j.surfrep.2016.03.003

    28. [28]

      Singh, J. A.; Yang, N. Y.; Bent, S. F. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 41. doi: 10.1146/annurev-chembioeng-060816-101547  doi: 10.1146/annurev-chembioeng-060816-101547

    29. [29]

      Moro, L. F. L. Comput. Chem. Eng. 2003, 27, 1303. doi: 10.1016/S0098-1354(03)00054-1  doi: 10.1016/S0098-1354(03)00054-1

    30. [30]

      Rostrup-Nielsen, J. R. Catal. Today 2000, 63, 159. doi: 10.1016/S0920-5861(00)00455-7  doi: 10.1016/S0920-5861(00)00455-7

    31. [31]

      Tsang, S. C.; Claridge, J. B.; Green, M. L. H. Catal. Today 1995, 23, 3. doi: 10.1016/0920-5861(94)00080-L  doi: 10.1016/0920-5861(94)00080-L

    32. [32]

      Zhang, Z.; Wang, S. S.; Song, R.; Cao, T.; Luo, L.; Chen, X.; Gao, Y.; Lu, J.; Li, W. X.; Huang, W. Nat. Commun. 2017, 8, 488. doi: 10.1038/s41467-017-00620-6  doi: 10.1038/s41467-017-00620-6

    33. [33]

      Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Angew. Chem. Int. Ed. 2007, 46, 1329. doi: 10.1002/anie.200603931  doi: 10.1002/anie.200603931

    34. [34]

      Funabiki, M.; Yamada, T.; Kayano, K. Catal. Today 1991, 10, 33. doi: 10.1016/0920-5861(91)80072-H  doi: 10.1016/0920-5861(91)80072-H

    35. [35]

      Hu, W.; Wang, Y.; Shang, H. Y.; Xu, H. D.; Zhong, L.; Chen, J. J.; Gong, M. C.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2015, 31, 1771.  doi: 10.3866/PKU.WHXB201507141

    36. [36]

      Iglesia, E. Appl. Catal. A: Gen. 1997, 161, 59. doi: 10.1016/S0926-860x(97)00186-5  doi: 10.1016/S0926-860x(97)00186-5

    37. [37]

      Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692. doi: 10.1021/cr050972v  doi: 10.1021/cr050972v

    38. [38]

      Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075. doi: 10.1039/c2cs35188a  doi: 10.1039/c2cs35188a

    39. [39]

      Shanks, B. H. Ind. Eng. Chem. Res. 2010, 49, 10212. doi: 10.1021/ie100487r  doi: 10.1021/ie100487r

    40. [40]

      Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y.; Yang, Y. H. Chem. Soc. Rev. 2014, 43, 3480. doi: 10.1039/c3cs60282f  doi: 10.1039/c3cs60282f

    41. [41]

      Serrano-Ruiz, J. C.; Dumesic, J. A. Green Chem. 2009, 11, 1101. doi: 10.1039/b906869d  doi: 10.1039/b906869d

    42. [42]

      Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103. doi: 10.1002/adsc.200390000  doi: 10.1002/adsc.200390000

    43. [43]

      Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840  doi: 10.1038/nmat1840

    44. [44]

      Calle-Vallejo, F.; Koper, M. T. M.; Bandarenka, A. S. Chem. Soc. Rev. 2013, 42, 5210. doi: 10.1039/c3cs60026b  doi: 10.1039/c3cs60026b

    45. [45]

      Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. doi: 10.1021/ja301553c  doi: 10.1021/ja301553c

    46. [46]

      Mohamed, Z.; Dasireddy, V. D. B. C.; Singh, S.; Friedrich, H. B. Appl. Catal. B: Environ. 2016, 180, 687. doi: 10.1016/j.apcatb.2015.07.012  doi: 10.1016/j.apcatb.2015.07.012

    47. [47]

      Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P.; Oosterbeek, H.; Holewijn, J. E.; Xu, X.; Kapteijn, F.; van Dillen, A. J.; de Jong, K. P. J. Am. Chem. Soc. 2006, 128, 3956. doi: 10.1021/ja058282w  doi: 10.1021/ja058282w

    48. [48]

      Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. doi: 10.1126/science.281.5383.1647  doi: 10.1126/science.281.5383.1647

    49. [49]

      Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8  doi: 10.1016/S0920-5861(96)00208-8

    50. [50]

      Li, J.; Chen, W.; Zhao, H.; Zheng, X.; Wu, L.; Pan, H.; Zhu, J.; Chen, Y.; Lu, J. J. Catal. 2017, 352, 371. doi: 10.1016/j.jcat.2017.06.007  doi: 10.1016/j.jcat.2017.06.007

    51. [51]

      Bond, G. C. Chem. Soc. Rev. 1991, 20, 441. doi: 10.1039/Cs9912000441  doi: 10.1039/Cs9912000441

    52. [52]

      Chen, M. S. Acta Phys. -Chim. Sin. 2017, 33, 2424.  doi: 10.3866/PKU.WHXB201707171

    53. [53]

      Hu, L. X.; Wang, L.; Wang, F.; Zhang, C. H.; He, H. Acta Phys. -Chim. Sin. 2017, 33, 1681.  doi: 10.3866/PKU.WHXB201704192

    54. [54]

      Gates, B. C. Chem. Rev. 1995, 95, 511. doi: 10.1021/cr00035a003  doi: 10.1021/cr00035a003

    55. [55]

      Bond, G. C. Acc. Chem. Res. 1993, 26, 490. doi: 10.1021/ar00033a006  doi: 10.1021/ar00033a006

    56. [56]

      Lindblad, M.; Lindfors, L. P.; Suntola, T. Catal. Lett. 1994, 27, 323. doi: 10.1007/Bf00813919  doi: 10.1007/Bf00813919

    57. [57]

      Ribeiro, F. H.; Somorjai, G. A. Recl.: J. R. Neth. Chem. Soc. 1994, 113, 419. doi: 10.1002/recl.19941131002  doi: 10.1002/recl.19941131002

    58. [58]

      Narayanan, S.; Uma, K. J. Chem. Soc. Faraday Trans. 1985, 81, 2733. doi: 10.1039/F19858102733  doi: 10.1039/F19858102733

    59. [59]

      Gould, T. D.; Lubers, A. M.; Neltner, B. T.; Carrier, J. V.; Weimer, A. W.; Falconer, J. L.; Medlin, J. W. J. Catal. 2013, 303, 9. doi: 10.1016/j.jcat.2013.03.013  doi: 10.1016/j.jcat.2013.03.013

    60. [60]

      Jiang, C. J.; Shang, Z. Y.; Liang, X. H. ACS Catal. 2015, 5, 4814. doi: 10.1021/acscatal.5b00969  doi: 10.1021/acscatal.5b00969

    61. [61]

      Mahata, N.; Cunha, A. F.; Orfao, J. J. M.; Figueiredo, J. L. Appl. Catal. A: Gen. 2008, 351, 204. doi: 10.1016/j.apcata.2008.09.015  doi: 10.1016/j.apcata.2008.09.015

    62. [62]

      Kim, D. H.; Sim, J. K.; Lee, J.; Seo, H. O.; Jeong, M. G.; Kim, Y. D.; Kim, S. H. Fuel 2013, 112, 111. doi: 10.1016/j.fuel.2013.04.089  doi: 10.1016/j.fuel.2013.04.089

    63. [63]

      Lei, Y.; Lu, J.; Luo, X. Y.; Wu, T. P.; Du, P.; Zhang, X. Y.; Ren, Y.; Wen, J. G.; Miller, D. J.; Miller, J. T.; et al. Nano Lett. 2013, 13, 4182. doi: 10.1021/nl401833p  doi: 10.1021/nl401833p

    64. [64]

      Stair, P. C. Top. Catal. 2012, 55, 93. doi: 10.1007/s11244-012-9776-4  doi: 10.1007/s11244-012-9776-4

    65. [65]

      Feng, H.; Elam, J. W.; Libera, J. A.; Setthapun, W.; Stair, P. C. Chem. Mater. 2010, 22, 3133. doi: 10.1021/cm100061n  doi: 10.1021/cm100061n

    66. [66]

      Elam, J. W.; Zinovev, A.; Han, C. Y.; Wang, H. H.; Welp, U.; Hryn, J. N.; Pellin, M. J. Thin Solid Films 2006, 515, 1664. doi: 10.1016/j.tsf.2006.05.049  doi: 10.1016/j.tsf.2006.05.049

    67. [67]

      Feng, H.; Libera, J. A.; Stair, P. C.; Miller, J. T.; Elam, J. W. ACS Catal. 2011, 1, 665. doi: 10.1021/cs2000957  doi: 10.1021/cs2000957

    68. [68]

      Lee, C.; Yoon, H. K.; Moon, S.; Yoon, K. J. Korean J. Chem. Eng. 1998, 15, 590. doi: 10.1007/Bf02698983  doi: 10.1007/Bf02698983

    69. [69]

      Matsumura, Y.; Okumura, M.; Usami, Y.; Kagawa, K.; Yamashita, H.; Anpo, M.; Haruta, M. Catal. Lett. 1997, 44, 189. doi: 10.1023/A:1018918301790  doi: 10.1023/A:1018918301790

    70. [70]

      King, J. S.; Wittstock, A.; Biener, J.; Kucheyev, S. O.; Wang, Y. M.; Baumann, T. F.; Giri, S. K.; Hamza, A. V.; Baeumer, M.; Bent, S. F. Nano Lett. 2008, 8, 2405. doi: 10.1021/nl801299z  doi: 10.1021/nl801299z

    71. [71]

      Knoops, H. C. M.; Mackus, A. J. M.; Donders, M. E.; van de Sanden, M. C. M.; Notten, P. H. L.; Kessels, W. M. M. Electrochem. Solid State Lett. 2009, 12, G34. doi: 10.1149/1.3125876  doi: 10.1149/1.3125876

    72. [72]

      Aaltonen, T.; Rahtu, A.; Ritala, M.; Leskela, M. Electrochem. Solid State Lett. 2003, 6, C130. doi: 10.1149/1.1595312  doi: 10.1149/1.1595312

    73. [73]

      Zhou, Y.; King, D. M.; Liang, X. H.; Li, J. H.; Weimer, A. W. Appl. Catal. B: Environ. 2010, 101, 54. doi: 10.1016/j.apcatb.2010.09.005  doi: 10.1016/j.apcatb.2010.09.005

    74. [74]

      Aaltonen, T.; Ritala, M.; Tung, Y. L.; Chi, Y.; Arstila, K.; Meinander, K.; Leskela, M. J. Mater. Res. 2004, 19, 3353. doi: 10.1557/Jmr.2004.0426  doi: 10.1557/Jmr.2004.0426

    75. [75]

      Liu, C.; Wang, C. C.; Kei, C. C.; Hsueh, Y. C.; Perng, T. P. Small 2009, 5, 1535. doi: 10.1002/smll.200900278  doi: 10.1002/smll.200900278

    76. [76]

      Lashdaf, M.; Lahtinen, J.; Lindblad, M.; Venalainen, T.; Krause, A. O. I. Appl. Catal. A: Gen. 2004, 276, 129. doi: 10.1016/j.apcata.2004.07.050  doi: 10.1016/j.apcata.2004.07.050

    77. [77]

      Baker, L.; Cavanagh, A. S.; Seghete, D.; George, S. M.; Mackus, A. J. M.; Kessels, W. M. M.; Liu, Z. Y.; Wagner, F. T. J. Appl. Phys. 2011, 109, 084333. doi: 10.1063/1.3555091  doi: 10.1063/1.3555091

    78. [78]

      Gould, T. D.; Lubers, A. M.; Corpuz, A. R.; Weimer, A. W.; Falconer, J. L.; Medlin, J. W. ACS Catal. 2015, 5, 1344. doi: 10.1021/cs501265b  doi: 10.1021/cs501265b

    79. [79]

      Lu, J. L.; Low, K. B.; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P. C.; Elam, J. W. Nat. Commun. 2014, 5, 3264. doi: 10.1038/Ncomms4264  doi: 10.1038/Ncomms4264

    80. [80]

      Setthapun, W.; Williams, W. D.; Kim, S. M.; Feng, H.; Elam, J. W.; Rabuffetti, F. A.; Poeppelmeier, K. R.; Stair, P. C.; Stach, E. A.; Ribeiro, F. H.; et al. J. Phys. Chem. C 2010, 114, 9758. doi: 10.1021/jp911178m  doi: 10.1021/jp911178m

    81. [81]

      Phatak, A. A.; Koryabkina, N.; Rai, S.; Ratts, J. L.; Ruettinger, W.; Farrauto, R. J.; Blau, G. E.; Delgass, W. N.; Ribeiro, F. H. Catal. Today 2007, 123, 224. doi: 10.1016/j.cattod.2007.02.031  doi: 10.1016/j.cattod.2007.02.031

    82. [82]

      Shim, J. H.; Jiang, X.; Bent, S. F.; Prinz, F. B. J. Electrochem. Soc. 2010, 157, B793. doi: 10.1149/1.3368787  doi: 10.1149/1.3368787

    83. [83]

      Hsieh, C. T.; Liu, Y. Y.; Tzou, D. Y.; Chen, W. Y. J. Phys. Chem. C 2012, 116, 26735. doi: 10.1021/jp303552j  doi: 10.1021/jp303552j

    84. [84]

      Li, J. W.; Bin, Z.; Chen, Y.; Zhang, J. K.; Yang, H. M.; Zhang, J. W.; Lu, X. L.; Li, G. C.; Qin, Y. Catal. Sci. Technol. 2015, 5, 4218. doi: 10.1039/c5cy00598a  doi: 10.1039/c5cy00598a

    85. [85]

      Enterkin, J. A.; Poeppelmeier, K. R.; Marks, L. D. Nano Lett. 2011, 11, 993. doi: 10.1021/nl104263j  doi: 10.1021/nl104263j

    86. [86]

      Winterbo.Wl Acta Metall. 1967, 15, 303. doi: 10.1016/0001-6160(67)90206-4  doi: 10.1016/0001-6160(67)90206-4

    87. [87]

      Lu, J. L.; Elam, J. W. Chem. Mater. 2015, 27, 4950. doi: 10.1021/acs.chemmater.5b00818  doi: 10.1021/acs.chemmater.5b00818

    88. [88]

      Vuori, H.; Pasanen, A.; Lindblad, M.; Valden, M.; Niemela, M. V.; Krause, A. O. I. Appl. Surf. Sci. 2011, 257, 4204. doi: 10.1016/j.apsusc.2010.12.021  doi: 10.1016/j.apsusc.2010.12.021

    89. [89]

      Chen, C. S.; Lin, J. H.; You, J. H.; Chen, C. R. J. Am. Chem. Soc. 2006, 128, 15950. doi: 10.1021/ja063083d  doi: 10.1021/ja063083d

    90. [90]

      Dai, M.; Kwon, J.; Halls, M. D.; Gordon, R. G.; Chabal, Y. J. Langmuir 2010, 26, 3911. doi: 10.1021/la903212c  doi: 10.1021/la903212c

    91. [91]

      Kim, J. M.; Lee, H. B. R.; Lansalot, C.; Dussarrat, C.; Gatineau, J.; Kim, H. Jpn. J. Appl. Phys. 2010, 49, 05FA10. doi: 10.1143/JJAP.49.05FA10  doi: 10.1143/JJAP.49.05FA10

    92. [92]

      Lee, H. B. R.; Kim, J.; Kim, H.; Kim, W. H.; Lee, J. W.; Hwang, I. J. Korean Phys. Soc. 2010, 56, 104. doi: 10.3938/jkps.56.104  doi: 10.3938/jkps.56.104

    93. [93]

      Masango, S. S.; Peng, L.; Marks, L. D.; Van Duyne, R. P.; Stair, P. C. J. Phys. Chem. C 2014, 118, 17655. doi: 10.1021/jp504067c  doi: 10.1021/jp504067c

    94. [94]

      Maroun, F.; Ozanam, F.; Magnussen, O. M.; Behm, R. J. Science 2001, 293, 1811. doi: 10.1126/science.1061696  doi: 10.1126/science.1061696

    95. [95]

      Gao, F.; Goodman, D. W. Chem. Soc. Rev. 2012, 41, 8009. doi: 10.1039/C2CS35160A  doi: 10.1039/C2CS35160A

    96. [96]

      Wang, A.; Liu, X. Y.; Mou, C. Y.; Zhang, T. J. Catal. 2013, 308, 258. doi: 10.1016/j.jcat.2013.08.023  doi: 10.1016/j.jcat.2013.08.023

    97. [97]

      Sárkány, A.; Geszti, O.; Sáfrán, G. Appl. Catal. A: Gen. 2008, 350, 157. doi: 10.1016/j.apcata.2008.08.012  doi: 10.1016/j.apcata.2008.08.012

    98. [98]

      Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S. Appl. Catal. B: Environ. 2006, 69, 115. doi: 10.1016/j.apcatb.2006.06.005  doi: 10.1016/j.apcatb.2006.06.005

    99. [99]

      Sun, S. Q.; Yi, Y. H.; Wang, L.; Zhang, J. L.; Guo, H. C. Acta Phys. -Chim. Sin. 2017, 33, 1123.  doi: 10.3866/PKU.WHXB201703301

    100. [100]

      Lim, B.; Kobayashi, H.; Yu, T.; Wang, J.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. J. Am. Chem. Soc. 2010, 132, 2506. doi: 10.1021/ja909787h  doi: 10.1021/ja909787h

    101. [101]

      Harada, M.; Asakura, K.; Toshima, N. J. Phys. Chem 1993, 97, 5103. doi: 10.1021/j100121a042  doi: 10.1021/j100121a042

    102. [102]

      Ferrando, R.; Jellinek, J.; Johnston, R. L. Chem. Rev. 2008, 108, 845. doi: 10.1021/cr040090g  doi: 10.1021/cr040090g

    103. [103]

      Hutchings, G. J.; Kiely, C. J. Acc. Chem. Res. 2013, 46, 1759. doi: 10.1021/ar300356m  doi: 10.1021/ar300356m

    104. [104]

      Wang, H.; Wang, C.; Yan, H.; Yi, H.; Lu, J. J. Catal. 2015, 324, 59. doi: 10.1016/j.jcat.2015.01.019  doi: 10.1016/j.jcat.2015.01.019

    105. [105]

      Cao, K.; Cai, J. M.; Liu, X.; Chen, R. J. Vac. Sci. Technol. A 2018, 36, 010801. doi: 10.1116/1.5000587  doi: 10.1116/1.5000587

    106. [106]

      Martensson, P.; Carlsson, J. O. J. Electrochem. Soc. 1998, 145, 2926. doi: 10.1149/1.1838738  doi: 10.1149/1.1838738

    107. [107]

      Hsu, I. J.; McCandless, B. E.; Weiland, C.; Willis, B. G. J. Vac. Sci. Technol. A 2009, 27, 660. doi: 10.1116/1.3143663  doi: 10.1116/1.3143663

    108. [108]

      Weber, M. J.; Mackus, A. J. M.; Verheijen, M. A.; van der Marel, C.; Kessels, W. M. M. Chem. Mater. 2012, 24, 2973. doi: 10.1021/cm301206e  doi: 10.1021/cm301206e

    109. [109]

      Weber, M. J.; Verheijen, M. A.; Bol, A. A.; Kessels, W. M. M. Nanotechnology 2015, 26, 094002. doi: 10.1088/0957-4484/26/9/094002  doi: 10.1088/0957-4484/26/9/094002

    110. [110]

      Cao, K.; Liu, X.; Zhu, Q.; Shan, B.; Chen, R. ChemCatChem 2016, 8, 326. doi: 10.1002/cctc.201500827  doi: 10.1002/cctc.201500827

    111. [111]

      Cao, K.; Zhu, Q. Q.; Shan, B.; Chen, R. Sci. Rep. 2015, 5, 8470. doi: 10.1038/Srep08470  doi: 10.1038/Srep08470

    112. [112]

      Qian, K.; Huang, W. Catal. Today 2011, 164, 320. doi: 10.1016/j.cattod.2010.10.018  doi: 10.1016/j.cattod.2010.10.018

    113. [113]

      Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y. F. J. Am. Chem. Soc. 2010, 132, 10398. doi: 10.1021/ja102617r  doi: 10.1021/ja102617r

    114. [114]

      Edwards, J. K.; Solsona, B.; Landon, P.; Carley, A. F.; Herzing, A.; Watanabe, M.; Kiely, C. J.; Hutchings, G. J. J. Mater. Chem. 2005, 15, 4595. doi: 10.1039/B509542E  doi: 10.1039/B509542E

    115. [115]

      Edwards, J. K.; Solsona, B. E.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J. J. Catal. 2005, 236, 69. doi: 10.1016/j.jcat.2005.09.015  doi: 10.1016/j.jcat.2005.09.015

    116. [116]

      Chen, M.; Kumar, D.; Yi, C. W.; Goodman, D. W. Science 2005, 310, 291. doi: 10.1126/science.1115800  doi: 10.1126/science.1115800

    117. [117]

      Yu, W. Y.; Mullen, G. M.; Flaherty, D. W.; Mullins, C. B. J. Am. Chem. Soc. 2014, 136, 11070. doi: 10.1021/ja505192v  doi: 10.1021/ja505192v

    118. [118]

      Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362. doi: 10.1126/science.1120560  doi: 10.1126/science.1120560

    119. [119]

      Chen, Y. T.; Wang, H. P.; Liu, C. J.; Zeng, Z. Y.; Zhang, H.; Zhou, C. M.; Jia, X. L.; Yang, Y. H. J. Catal. 2012, 289, 105. doi: 10.1016/j.jcat.2012.01.020  doi: 10.1016/j.jcat.2012.01.020

    120. [120]

      Silva, T. A. G.; Teixeira-Neto, E.; Lopez, N.; Rossi, L. M. Sci. Rep. 2014, 4, 5766. doi: 10.1038/Srep05766  doi: 10.1038/Srep05766

    121. [121]

      Henning, A. M.; Watt, J.; Miedziak, P. J.; Cheong, S.; Santonastaso, M.; Song, M.; Takeda, Y.; Kirkland, A. I.; Taylor, S. H.; Tilley, R. D. Angew. Chem. Int. Ed. 2013, 125, 1517. doi: 10.1002/ange.201207824  doi: 10.1002/ange.201207824

    122. [122]

      Chen, Y.; Lim, H.; Tang, Q.; Gao, Y.; Sun, T.; Yan, Q.; Yang, Y. Appl. Catal. A: Gen. 2010, 380, 55. doi: 10.1016/j.apcata.2010.03.026  doi: 10.1016/j.apcata.2010.03.026

    123. [123]

      Pritchard, J.; Kesavan, L.; Piccinini, M.; He, Q.; Tiruvalam, R.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Edwards, J. K.; Kiely, C. J.; et al. Langmuir 2010, 26, 16568. doi: 10.1021/la101597q  doi: 10.1021/la101597q

    124. [124]

      Zhang, H.; Xie, Y.; Sun, Z.; Tao, R.; Huang, C.; Zhao, Y.; Liu, Z. Langmuir 2011, 27, 1152. doi: 10.1021/la1034728  doi: 10.1021/la1034728

    125. [125]

      Hou, W.; Dehm, N. A.; Scott, R. W. J. J. Catal. 2008, 253, 22. doi: 10.1016/j.jcat.2007.10.025  doi: 10.1016/j.jcat.2007.10.025

    126. [126]

      Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m  doi: 10.1021/ar300361m

    127. [127]

      Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Catal. Sci. Technol. 2017, 7, 4259. doi: 10.1039/c7cy00881c  doi: 10.1039/c7cy00881c

    128. [128]

      Flytzani-Stephanopoulos, M.; Gates, B. C. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 545. doi: 10.1146/annurev-chembioeng-062011-080939  doi: 10.1146/annurev-chembioeng-062011-080939

    129. [129]

      Flytzani-Stephanopoulos, M. Acc. Chem. Res. 2014, 47, 783. doi: 10.1021/ar4001845  doi: 10.1021/ar4001845

    130. [130]

      Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/Nchem.1095  doi: 10.1038/Nchem.1095

    131. [131]

      Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Science 2014, 346, 1498. doi: 10.1126/science.1260526  doi: 10.1126/science.1260526

    132. [132]

      Zhang, X.; Shi, H.; Xu, B. Q. Angew. Chem. Int. Ed. 2005, 44, 7132. doi: 10.1002/anie.200502101  doi: 10.1002/anie.200502101

    133. [133]

      Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. J. Am. Chem. Soc. 2013, 135, 12634. doi: 10.1021/ja401847c  doi: 10.1021/ja401847c

    134. [134]

      Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M.; et al. Nat. Commun. 2016, 7, 13638. doi: 10.1038/Ncomms13638  doi: 10.1038/Ncomms13638

    135. [135]

      Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W.; et al. Nature 2017, 544, 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    136. [136]

      Liu, J. Y. ACS Catal. 2017, 7, 34. doi: 10.1021/acscatal.6b01534  doi: 10.1021/acscatal.6b01534

    137. [137]

      Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P.; et al. Science 2016, 353, 150. doi: 10.1126/science.aaf8800  doi: 10.1126/science.aaf8800

    138. [138]

      Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y. T.; Tan, Y.; Qiao, B.; Li, L.; Wang, A.; et al. Angew. Chem. Int. Ed. 2016, 55, 16054. doi: 10.1002/anie.201607885  doi: 10.1002/anie.201607885

    139. [139]

      Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J. X.; Liu, J. Y.; Zhang, T. J. Am. Chem. Soc. 2013, 135, 15314. doi: 10.1021/ja408574m  doi: 10.1021/ja408574m

    140. [140]

      Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Angew. Chem. Int. Ed. 2016, 55, 2058. doi: 10.1002/anie.201509241  doi: 10.1002/anie.201509241

    141. [141]

      Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Angew. Chem. Int. Ed. 2016, 55, 10800. doi: 10.1002/anie.201604802  doi: 10.1002/anie.201604802

    142. [142]

      Ding, K.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Science 2015, 350, 189. doi: 10.1126/science.aac6368  doi: 10.1126/science.aac6368

    143. [143]

      Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N.; et al. Sci. Rep. 2013, 3, 1775. doi: 10.1038/Srep01775  doi: 10.1038/Srep01775

    144. [144]

      Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G. A. J. Phys. Chem. C 2014, 118, 3890. doi: 10.1021/jp408979h  doi: 10.1021/jp408979h

    145. [145]

      Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. J. Am. Chem. Soc. 2015, 137, 10484. doi: 10.1021/jacs.5b06485  doi: 10.1021/jacs.5b06485

    146. [146]

      Huang, X.; Xia, Y.; Cao, Y.; Zheng, X.; Pan, H.; Zhu, J.; Ma, C.; Wang, H.; Li, J.; You, R.; et al. Nano Res. 2017, 10, 1302. doi: 10.1007/s12274-016-1416-z  doi: 10.1007/s12274-016-1416-z

    147. [147]

      Cao, Y.; Chen, S.; Luo, Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L.; Lu, J.; Yang, J.; Yao, T.; et al. Angew. Chem. Int. Ed. 2017, 56, 12191. doi: 10.1002/anie.201706467  doi: 10.1002/anie.201706467

    148. [148]

      Wang, C.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J.; Liu, D.; Li, W. X.; Lu, J. ACS Catal. 2017, 7, 887. doi: 10.1021/acscatal.6b02685  doi: 10.1021/acscatal.6b02685

    149. [149]

      Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S.; Wang, H. H.; Redfern, P.; et al. Nat. Commun. 2014, 5, 4895. doi: 10.1038/ncomms5895  doi: 10.1038/ncomms5895

    150. [150]

      Nesselberger, M.; Roefzaad, M.; Hamou, R. F.; Biedermann, P. U.; Schweinberger, F. F.; Kunz, S.; Schloegl, K.; Wiberg, G. K. H.; Ashton, S.; Heiz, U.; et al. Nat. Mater. 2013, 12, 919. doi: 10.1038/NMAT3712  doi: 10.1038/NMAT3712

    151. [151]

      Yoon, B.; Hakkinen, H.; Landman, U.; Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403. doi: 10.1126/science.1104168  doi: 10.1126/science.1104168

    152. [152]

      Li, Z. Y.; Young, N. P.; Di Vece, M.; Palomba, S.; Palmer, R. E.; Bleloch, A. L.; Curley, B. C.; Johnston, R. L.; Jiang, J.; Yuan, J. Nature 2008, 451, 46. doi: 10.1038/nature06470  doi: 10.1038/nature06470

    153. [153]

      Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H.; et al. Nat. Commun. 2017, 8, 1070. doi: 10.1038/S41467-017-01259-Z  doi: 10.1038/S41467-017-01259-Z

    154. [154]

      Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H.; et al. Science 2010, 328, 1141. doi: 10.1126/science.1188267  doi: 10.1126/science.1188267

    155. [155]

      Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W.; et al. Science 2014, 344, 495. doi: 10.1126/science.1252553  doi: 10.1126/science.1252553

    156. [156]

      Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Science 2007, 318, 1757. doi: 10.1126/science.1150038  doi: 10.1126/science.1150038

    157. [157]

      Zhao, G. F.; Yang, F.; Chen, Z. J.; Liu, Q. F.; Ji, Y. J.; Zhang, Y.; Niu, Z. Q.; Mao, J. J.; Bao, X. H.; Hu, P. J.; et al. Nat. Commun. 2017, 8, 14039. doi: 10.1038/Ncomms14039  doi: 10.1038/Ncomms14039

    158. [158]

      Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlogl, R.; Willinger, M. G. Angew. Chem. Int. Ed. 2015, 54, 4544. doi: 10.1002/anie.201411581  doi: 10.1002/anie.201411581

    159. [159]

      Kattel, S.; Ramirez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    160. [160]

      Lei, Y.; Lee, S.; Low, K. B.; Marshall, C. L.; Elam, J. W. ACS Catal. 2016, 6, 3457. doi: 10.1021/acscatal.6b00963  doi: 10.1021/acscatal.6b00963

    161. [161]

      Gao, Z.; Dong, M.; Wang, G. Z.; Sheng, P.; Wu, Z. W.; Yang, H. M.; Zhang, B.; Wang, G. F.; Wang, J. G.; Qin, Y. Angew. Chem. Int. Ed. 2015, 54, 9006. doi: 10.1002/anie.201503749  doi: 10.1002/anie.201503749

    162. [162]

      Yi, H.; Xia, Y.; Yan, H.; Lu, J. Chin. J. Catal. 2017, 38, 1581. doi: 10.1016/S1872-2067(17)62768-2  doi: 10.1016/S1872-2067(17)62768-2

    163. [163]

      Liu, X.; Zhu, Q. Q.; Lang, Y.; Cao, K.; Chu, S. Q.; Shan, B.; Chen, R. Angew. Chem. Int. Ed. 2017, 56, 1648. doi: 10.1002/anie.201611559  doi: 10.1002/anie.201611559

    164. [164]

      Haruta, M. Chem. Record 2003, 3, 75. doi: 10.1002/tcr.10053  doi: 10.1002/tcr.10053

    165. [165]

      Wang, C. L.; Wang, H. W.; Yao, Q.; Yan, H.; Li, J. J.; Lu, J. L. J. Phys. Chem. C 2016, 120, 478. doi: 10.1021/acs.jpcc.5b11047  doi: 10.1021/acs.jpcc.5b11047

    166. [166]

      Yao, Q.; Wang, C. L.; Wang, H. W.; Yan, H.; Lu, J. L. J. Phys. Chem. C 2016, 120, 9174. doi: 10.1021/acs.jpcc.5b12712  doi: 10.1021/acs.jpcc.5b12712

    167. [167]

      Gao, Z.; Qin, Y. Acc. Chem. Res. 2017, 50, 2309. doi: 10.1021/acs.accounts.7b00266  doi: 10.1021/acs.accounts.7b00266

    168. [168]

      Li, J. J.; Lu, J. L. Chin. J. Chem. Phys. 2017, 30, 319. doi: 10.1063/1674-0068/30/cjcp1703032  doi: 10.1063/1674-0068/30/cjcp1703032

    169. [169]

      den Breejen, J. P.; Radstake, P. B.; Bezemer, G. L.; Bitter, J. H.; Froseth, V.; Holmen, A.; de Jong, K. P. J. Am. Chem. Soc. 2009, 131, 7197. doi: 10.1021/ja901006x  doi: 10.1021/ja901006x

    170. [170]

      Kuhn, J. N.; Huang, W.; Tsung, C. K.; Zhang, Y.; Somorjai, G. A. J. Am. Chem. Soc. 2008, 130, 14026. doi: 10.1021/ja805050c  doi: 10.1021/ja805050c

    171. [171]

      Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k  doi: 10.1021/ja500328k

    172. [172]

      Englisch, M.; Jentys, A.; Lercher, J. A. J. Catal. 1997, 166, 25. doi: 10.1006/jcat.1997.1494  doi: 10.1006/jcat.1997.1494

    173. [173]

      Galvis, H. M. T.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. J. Am. Chem. Soc. 2012, 134, 16207. doi: 10.1021/ja304958u  doi: 10.1021/ja304958u

    174. [174]

      Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Chem. Soc. Rev. 2016, 45, 4747. doi: 10.1039/c6cs00094k  doi: 10.1039/c6cs00094k

    175. [175]

      Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.; Kung, H. H.; Stair, P. C. Science 2012, 335, 1205. doi: 10.1126/science.1212906  doi: 10.1126/science.1212906

    176. [176]

      Feng, H.; Lu, J. L.; Stair, P. C.; Elam, J. W. Catal. Lett. 2011, 141, 512. doi: 10.1007/s10562-011-0548-8  doi: 10.1007/s10562-011-0548-8

    177. [177]

      Lu, J. L.; Liu, B.; Guisinger, N. P.; Stair, P. C.; Greeley, J. P.; Elam, J. W. Chem. Mater. 2014, 26, 6752. doi: 10.1021/cm503178j  doi: 10.1021/cm503178j

    178. [178]

      Huff, M.; Schmidt, L. D. J. Phys. Chem. 1993, 97, 11815. doi: 10.1021/J100147a040  doi: 10.1021/J100147a040

    179. [179]

      Helveg, S.; Lopez-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen, F.; Norskov, J. K. Nature 2004, 427, 426. doi: 10.1038/nature02278  doi: 10.1038/nature02278

    180. [180]

      Zhang, H. B.; Gu, X. K.; Canlas, C.; Kropf, A. J.; Aich, P.; Greeley, J. P.; Elam, J. W.; Meyers, R. J.; Dumesic, J. A.; Stair, P. C.; et al. Angew. Chem. Int. Ed. 2014, 53, 12132. doi: 10.1002/anie.201407236  doi: 10.1002/anie.201407236

    181. [181]

      Cai, J.; Zhang, J.; Cao, K.; Gong, M.; Lang, Y.; Liu, X.; Chu, S.; Shan, B.; Chen, R. ACS Appl. Nano Mater. 2018, 1, 522. doi: 10.1021/acsanm.7b00026  doi: 10.1021/acsanm.7b00026

    182. [182]

      Cao, K.; Shi, L.; Gong, M.; Cai, J. M.; Liu, X.; Chu, S. Q.; Lang, Y.; Shan, B.; Chen, R. Small 2017, 13, 1700648. doi: 10.1002/Smll.201700648  doi: 10.1002/Smll.201700648

    183. [183]

      Ding, L.; Yi, H.; Zhang, W.; You, R.; Cao, T.; Yang, J.; Lu, J.; Huang, W. ACS Catal. 2016, 6, 3700. doi: 10.1021/acscatal.6b00702  doi: 10.1021/acscatal.6b00702

    184. [184]

      Hu, Q. M.; Wang, S.; Gao, Z.; Li, Y. Q.; Zhang, Q.; Xiang, Q.; Qin, Y. Appl. Catal. B: Environ. 2017, 218, 591. doi: 10.1016/j.apcatb.2017.06.087  doi: 10.1016/j.apcatb.2017.06.087

    185. [185]

      Gounder, R.; Iglesia, E. Chem. Commun. 2013, 49, 3491. doi: 10.1039/c3cc40731d  doi: 10.1039/c3cc40731d

    186. [186]

      Canivet, J.; Fateeva, A.; Guo, Y. M.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev. 2014, 43, 5594. doi: 10.1039/c4cs00078a  doi: 10.1039/c4cs00078a

    187. [187]

      Zhang, H. B.; Pan, X. L.; Han, X. W.; Liu, X. M.; Wang, X. F.; Shen, W. L.; Bao, X. H. Chem. Sci. 2013, 4, 1075. doi: 10.1039/c2sc21761a  doi: 10.1039/c2sc21761a

    188. [188]

      Yi, H.; Du, H.; Hu, Y.; Yan, H.; Jiang, H. L.; Lu, J. ACS Catal. 2015, 5, 2735. doi: 10.1021/acscatal.5b00129  doi: 10.1021/acscatal.5b00129

    189. [189]

      El Kolli, N.; Delannoy, L.; Louis, C. J. Catal. 2013, 297, 79. doi: 10.1016/j.jcat.2012.09.022  doi: 10.1016/j.jcat.2012.09.022

    190. [190]

      Hugon, A.; Delannoy, L.; Krafft, J. M.; Louis, C. J. Phys. Chem. C 2010, 114, 10823. doi: 10.1021/jp100479b  doi: 10.1021/jp100479b

    191. [191]

      Canlas, C. P.; Lu, J. L.; Ray, N. A.; Grosso-Giordano, N. A.; Lee, S.; Elam, J. W.; Winans, R. E.; Van Duyne, R. P.; Stair, P. C.; Notestein, J. M. Nat. Chem. 2012, 4, 1030. doi: 10.1038/Nchem.1477  doi: 10.1038/Nchem.1477

    192. [192]

      Bartholomew, C. H. Appl. Catal. A: Gen. 2001, 212, 17. doi: 10.1016/S0926-860x(00)00843-7  doi: 10.1016/S0926-860x(00)00843-7

    193. [193]

      Wanke, S. E. J. Catal. 1977, 46, 234. doi: 10.1016/0021-9517(77)90204-4  doi: 10.1016/0021-9517(77)90204-4

    194. [194]

      Campbell, C. T.; Parker, S. C.; Starr, D. E. Science 2002, 298, 811. doi: 10.1126/science.1075094  doi: 10.1126/science.1075094

    195. [195]

      O'Neill, B. J.; Jackson, D. H. K.; Crisci, A. J.; Farberow, C. A.; Shi, F. Y.; Alba-Rubio, A. C.; Lu, J. L.; Dietrich, P. J.; Gu, X. K.; Marshall, C. L.; et al. Angew. Chem. Int. Ed. 2013, 52, 13808. doi: 10.1002/anie.201308245  doi: 10.1002/anie.201308245

    196. [196]

      Zheng, F. F.; Li, Q.; Zhang, H.; Wong. W. Z.; Yin, X. D.; Zheng, Y. P.; Huang, C. J.; Wan, H. L. Acta Phys. -Chim. Sin. 2017, 33, 1689.  doi: 10.3866/PKU.WHXB201704243

    197. [197]

      Seipenbusch, M.; Binder, A. J. Phys. Chem. C 2009, 113, 20606. doi: 10.1021/jp9063998  doi: 10.1021/jp9063998

    198. [198]

      Yu, K.; Wu, Z.; Zhao, Q.; Li, B.; Xie, Y. J. Phys. Chem. C 2008, 112, 2244. doi: 10.1021/jp711880e  doi: 10.1021/jp711880e

    199. [199]

      Arnal, P. M.; Comotti, M.; Schuth, F. Angew. Chem. Int. Ed. 2006, 45, 8224. doi: 10.1002/anie.200603507  doi: 10.1002/anie.200603507

    200. [200]

      Zhang, H.; Canlas, C.; Jeremy Kropf, A.; Elam, J. W.; Dumesic, J. A.; Marshall, C. L. J. Catal. 2015, 326, 172. doi: 10.1016/j.jcat.2015.03.017  doi: 10.1016/j.jcat.2015.03.017

    201. [201]

      Gould, T. D.; Izar, A.; Weimer, A. W.; Falconer, J. L.; Medlin, J. W. ACS Catal. 2014, 4, 2714. doi: 10.1021/cs500809w  doi: 10.1021/cs500809w

    202. [202]

      O'Neill, B. J.; Sener, C.; Jackson, D. H. K.; Kuech, T. F.; Dumesic, J. A. ChemSusChem 2014, 7, 3247. doi: 10.1002/cssc.201402832  doi: 10.1002/cssc.201402832

    203. [203]

      Wang, C. L.; Lu, J. L. Chin. J. Chem. Phys. 2016, 29, 571. doi: 10.1063/1674-0068/29/cjcp1604065  doi: 10.1063/1674-0068/29/cjcp1604065

    204. [204]

      Lee, J. C.; Jackson, D. H. K.; Li, T.; Winans, R. E.; Dumesic, J. A.; Kuech, T. F.; Huber, G. W. Energy Environ. Sci. 2014, 7, 1657. doi: 10.1039/c4ee00379a  doi: 10.1039/c4ee00379a

    205. [205]

      Onn, T. M.; Zhang, S. Y.; Arroyo-Ramirez, L.; Chung, Y. C.; Graham, G. W.; Pan, X. Q.; Gorte, R. J. ACS Catal. 2015, 5, 5696. doi: 10.1021/acscatal.5b01348  doi: 10.1021/acscatal.5b01348

    206. [206]

      Ge, Q. J.; Huang, Y. M.; Qiu, F. Y.; Li, S. B. Appl. Catal. A: Gen. 1998, 167, 23. doi: 10.1016/S0926-860x(97)00290-1  doi: 10.1016/S0926-860x(97)00290-1

    207. [207]

      Ema, T.; Miyazaki, Y.; Koyama, S.; Yano, Y.; Sakai, T. Chem. Commun. 2012, 48, 4489. doi: 10.1039/c2cc30591g  doi: 10.1039/c2cc30591g

    208. [208]

      Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    209. [209]

      Kang, J.; Cheng, K.; Zhang, L.; Zhang, Q.; Ding, J.; Hua, W.; Lou, Y.; Zhai, Q.; Wang, Y. Angew. Chem. Int. Ed. 2011, 123, 5306. doi: 10.1002/ange.201101095  doi: 10.1002/ange.201101095

    210. [210]

      Alba-Rubio, A. C.; O'Neill, B. J.; Shi, F.; Akatay, C.; Canlas, C.; Li, T.; Winans, R.; Elam, J. W.; Stach, E. A.; Voyles, P. M.; et al. ACS Catal. 2014, 4, 1554. doi: 10.1021/cs500330p  doi: 10.1021/cs500330p

    211. [211]

      Ge, H. B.; Zhang, B.; Gu, X. M.; Liang, H. J.; Yang, H. M.; Gao, Z.; Wang, J. G.; Qin, Y. Angew. Chem. Int. Ed. 2016, 55, 7081. doi: 10.1002/anie.201600799  doi: 10.1002/anie.201600799

  • 加载中
    1. [1]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    2. [2]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    3. [3]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    4. [4]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    7. [7]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    8. [8]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    9. [9]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    10. [10]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    11. [11]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    12. [12]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    13. [13]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    14. [14]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    18. [18]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    19. [19]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    20. [20]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

Metrics
  • PDF Downloads(9)
  • Abstract views(779)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return