Citation: HUANG Lili, SHAO Xiang. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1390-1396. doi: 10.3866/PKU.WHXB201804191 shu

CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly

  • Corresponding author: SHAO Xiang, shaox@ustc.edu.cn
  • Received Date: 2 April 2018
    Revised Date: 16 April 2018
    Accepted Date: 17 April 2018
    Available Online: 23 December 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21333001, 91545128, 91227117), the Ministry of Science and Technology of China (2017YFA0205003), and the Thousand Talent Program for Young Outstanding Scientists of the Chinese Governmentthe National Natural Science Foundation of China 21333001the National Natural Science Foundation of China 91227117the National Natural Science Foundation of China 91545128the Ministry of Science and Technology of China 2017YFA0205003

  • The controllability of metal adatoms has been attracting ever-growing attention because the metal species in particular single-atom metals can play an important role in various surface processes, including heterogeneous catalytic reactions. On the other hand, organic self-assembly films have been regarded as an efficient and versatile bottom-up method to fabricate surface nanostructures, whose functionality and periodicity can be highly designable. In this work, we have developed a novel strategy to steer the generation and distribution of metal adatoms by combining the surface self-assemblies with exposure to small inorganic gaseous molecules. More specifically, we have prepared a honeycomb structure of melem (triamino-s-heptazine) on the Au(111) surface based on a well-structured hydrogen bonding network. The achieved melem self-assembly contains periodic hexagonal pores having diameters as large as around 1 nm. More importantly, the peripheries of the nanopores are decorated with heterocyclic N atoms that can probably form strong interactions with the metal species. Upon exposing the melem self-assembly to a CO atmosphere at room temperature, a fair number of Au adatoms were produced and trapped inside the nanopores encircled by the melem molecules. Single or clustered Au vacancies were concomitantly formed that were also trapped by the melem pores and stabilized by the surrounding molecules, as confirmed by high-resolution scanning tunneling microscopy (STM) images. Both types of added species showed positive correlations with the CO exposure and saturated at around 0.01 monolayer. In addition, owing to the large pore size, as well as the presence of multiple docking sites inside the nanopores, more than one Au adatom can reside in a melem nanopore; they can be distributed in a variety of configurations for bi-Au (two Au adatoms) and tri-Au (three Au adatoms) species, whose population can be manipulated with the CO exposure. Moreover, control experiments demonstrated that these CO-induced Au species, including the adatoms and vacancies, can survive annealing treatments up to the temperature at which the melem molecules start to desorb, indicating a substantial thermal stability. The formed Au species may hold great potential for serving as active sites for surface reactions. More interestingly, the bi-Au and tri-Au species have moderate Au-Au intervals, and can be potentially active for certain structurally sensitive bimolecular reactions. Considering all these aspects, we believe that this work presents a fresh approach to utilizing organic self-assembly films and has demonstrated a rather novel strategy for preparing various single-atom metal species on substrate surfaces.
  • 加载中
    1. [1]

      Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m  doi: 10.1021/ar300361m

    2. [2]

      Pan, M.; Gong, J.; Dong, G.; Mullins, C. B. Acc. Chem. Res. 2014, 47, 750. doi: 10.1021/ar400172u  doi: 10.1021/ar400172u

    3. [3]

      Campbell, C. T. Annul. Rev. Phys. Chem. 1990, 41, 775. doi: 10.1146/annurev.pc.41. 100190.004015  doi: 10.1146/annurev.pc.41.100190.004015

    4. [4]

      Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Science 2008, 321, 1331. doi: 10.1126/science.1159639  doi: 10.1126/science.1159639

    5. [5]

      Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. Angew. Chem. Int. Ed. 2007, 46, 8593. doi: 10.1002/anie.200790227  doi: 10.1002/anie.200790227

    6. [6]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Zheng, J.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    7. [7]

      Zhang, H.; Watanabe, T.; Okumura, M.; Haruta M.; Toshima, N. Nat. Mater. 2012, 11, 49. doi: 10.1038/nmat3143  doi: 10.1038/nmat3143

    8. [8]

      Yang, B.; Pan, Y.; Lin, X.; Nilius, N.; Freund, H. J.; Hulot, C.; Graud, A.; Blechert, S.; Tosoni, S.; Sauer, J. J. Am. Chem. Soc. 2012, 134, 11161. doi: 10.1021/ja300304s  doi: 10.1021/ja300304s

    9. [9]

      Giesen, M. Prog. Surf. Sci. 2001, 68, 1. doi: 10.1016/S0079-6816(00)00021-6  doi: 10.1016/S0079-6816(00)00021-6

    10. [10]

      Kern, K.; Niehus, H.; Schatz, A.; Zeppenfeld, P.; Goerge, J.; Comsa, G. Phys. Rev. Lett. 1991, 67, 855. doi: 10.1103/PhysRevLett.67.855  doi: 10.1103/PhysRevLett.67.855

    11. [11]

      Carlisle, C. I.; Fujimoto, T.; Sim, W. S.; King, D. A. Surf. Sci. 2000, 470, 15. doi: 10.1016/S0039-6028(00)00831-1  doi: 10.1016/S0039-6028(00)00831-1

    12. [12]

      Nakagoe, O.; Watanabe, K.; Takagi, N.; Matsumoto, Y. Phys. Rev. Lett. 2003, 90, 226105. doi: 10.1103/PhysRevLett.90.226105  doi: 10.1103/PhysRevLett.90.226105

    13. [13]

      Wang, L.; Li, P.; Shi, H.; Li, Z.; Wu, K.; Shao, X. J. Phys. Chem. C 2017, 121, 7977. doi: 10.1021/acs.jpcc.7b00938  doi: 10.1021/acs.jpcc.7b00938

    14. [14]

      Agrawal, P. M.; Rice, B. M.; Thompson, D. L. Surf. Sci. 2002, 515, 21. doi: 10.1016/S0039-6028(02)01916-7  doi: 10.1016/S0039-6028(02)01916-7

    15. [15]

      Devyatko, Y. N.; Rogozhkin, S. V.; Fadeev, A. V. Phys. Rev. B 2001, 63, 193401. doi: 10.1103/PhysRevB.63.193401  doi: 10.1103/PhysRevB.63.193401

    16. [16]

      Pawin, G.; Wong, K. L.; Kim, D.; Sun, D.; Bartels, L.; Hong, S.; Rahman, T. S.; Carp, C.; Marsella, M. A. Angew. Chem. Int. Ed. 2008, 47, 8442. doi: 10.1002/anie.200802543  doi: 10.1002/anie.200802543

    17. [17]

      Dong, L.; Sun, Q.; Zhang, C.; Li, Z.; Sheng, K.; Kong, H.; Tan, Q.; Pan, Y.; Hu A.; Xu, W. Chem. Commun. 2013, 49, 1735. doi: 10.1039/C2CC37316E  doi: 10.1039/C2CC37316E

    18. [18]

      Rosei, F.; Schunack, M.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Science 2002, 296, 328. doi: 10.1126/science.1069157  doi: 10.1126/science.1069157

    19. [19]

      Shi, H.; Wang, W.; Li, Z.; Wang, L.; Shao, X. Chin. J. Chem. Phys. 2017, 30, 443. doi: 10.1063/1674-0068/30/cjcp1704078  doi: 10.1063/1674-0068/30/cjcp1704078

    20. [20]

      Kudernac, T.; Lei, S.; Elemans, J. A.; De Feyter, S. Chem. Soc. Rev. 2009, 38, 402. doi: 10.1039/b708902n  doi: 10.1039/b708902n

    21. [21]

      Liu, X. H.; Mo, Y. P.; Yue, J. Y.; Zheng, Q. N.; Yan, H. J.; Wang, D.; Wan, L. J. Small 2014, 10, 4934. doi: 10.1002/smll.201400899  doi: 10.1002/smll.201400899

    22. [22]

      Niu, L.; Ma, X.; Liu, L.; Mao, X.; Wu, D.; Yang, Y.; Zeng, Q. D.; Wang, C. Phys. Chem. Chem. Phys. 2010, 12, 11683. doi: 10.1039/C0CP90090G  doi: 10.1039/C0CP90090G

    23. [23]

      Ciesielski, A.; Palma, C. A.; Bonini, M.; Samorì, P. Adv. Mater. 2010, 22, 3506. doi: 10.1002/adma.201001582  doi: 10.1002/adma.201001582

    24. [24]

      Barth, J. V. Annul. Rev. Phys. Chem. 2007, 58, 375. doi: 10.1146/annurev.physchem.56. 092503.141259  doi: 10.1146/annurev.physchem.56.092503.141259

    25. [25]

      Bonifazi, D.; Mohnani, S.; Llanes-Pallas, A. Chem. Eur. J. 2009, 15, 7004. doi: 10.1002/chem.200900900  doi: 10.1002/chem.200900900

    26. [26]

      Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X. B.; Cai, C. Z.; Barth, J. V.; Kern, K. Nat. Mater. 2004, 3, 229. doi: 10.1038/nmat1088  doi: 10.1038/nmat1088

    27. [27]

      Iancu, V.; Braun, K. F.; Schouteden, K.; Van Haesendonck, C. Phys. Rev. Lett. 2014, 113, 106102. doi: 10.1103/PhysRevLett.113.106102  doi: 10.1103/PhysRevLett.113.106102

    28. [28]

      Zhou, X.; Yang, W.; Chen, Q.; Geng, Z.; Shao, X.; Li, J.; Wang, Y.; Dai, D.; Chen, W; Xu, G.; Yang, X.; Wu, K. J. Phys. Chem. C 2016, 120, 1709. doi: 10.1021/acs.jpcc.5b11362  doi: 10.1021/acs.jpcc.5b11362

    29. [29]

      Zhou, X.; Shen, Q.; Yuan, K.; Yang, W.; Chen, Q.; Geng, Z.; Zhang, J.; Shao, X.; Chen, W.; Xu, G.; Yang, X.; Wu, K. J. Am. Chem. Soc. 2018, 140, 554. doi: 10.1021/jacs.7b10394  doi: 10.1021/jacs.7b10394

    30. [30]

      Brown, M. A.; Fujimori, Y.; Ringleb, F.; Shao, X.; Stavale, F.; Nilius, N.; Sterrer, M.; Freund, H. J. J. Am. Chem. Soc. 2011, 133, 10668. doi: 10.1021/ja204798z  doi: 10.1021/ja204798z

    31. [31]

      Yim, W. L.; Nowitzki, T.; Necke, M.; Schnars, H.; Nickut, A.; Shamery, K.; Klüner, T.; Bäumer, M. J. Phys. Chem. C 2007, 111, 445. doi: 10.1021/jp0665729  doi: 10.1021/jp0665729

    32. [32]

      Eren, B.; Zherebetskyy, D.; Patera, L. L.; Wu, H. C.; Bluhm, H.; Africh, C.; Wang, L.; Somorjai, G. A.; Salmeron, M. Science 2016, 351, 4758. doi: 10.1126/science.aad8868  doi: 10.1126/science.aad8868

    33. [33]

      Eren, B.; Liu, Z.; Stacchiola, D.; Somorjai, A. G.; Salmeron, M. J. Phys. Chem. C 2016, 120, 8227. doi: 10.1021/acs.jpcc.6b02143  doi: 10.1021/acs.jpcc.6b02143

    34. [34]

      Wang, L.; Chen, Q.; Shi, H.; Liu, H.; Ren, X.; Wang, B.; Wu, K.; Shao, X. Phys. Chem. Chem. Phys. 2016, 18, 2324. doi: 10.1039/c5cp0 5976c  doi: 10.1039/c5cp05976c

    35. [35]

      Wang, L.; Shi, H. X.; Wang, W. Y.; Shi, H.; Shao, X. Acta Phys. -Chim. Sin. 2017, 33, 393.  doi: 10.3866/PKU.WHXB201611033

    36. [36]

      Eichhorn, J.; Lotsch, V. B.; Schnick, W.; Lackinger, H. M. Cryst. Eng. Commun. 2011, 13, 5559. doi: 10.1039/c1ce05342f  doi: 10.1039/c1ce05342f

    37. [37]

      Uemura, S.; Aono, M.; Sakata, K.; Komatsu, T.; Kunitake, M. J. Phys. Chem. C 2013, 117, 24815. doi: 10.1021/jp406810c  doi: 10.1021/jp406810c

    38. [38]

      Uemura, S.; Sakata, K.; Aono, M.; Nakamura, Y.; Kunitake, M. Front. Chem. Sci. Eng. 2016, 10, 294. doi: 10.1007/s11705-016-1564-4  doi: 10.1007/s11705-016-1564-4

    39. [39]

      Bao, M.; Wei, X.; Cai, L.; Sun, Q.; Liu. Z.; Xu, W. Phys. Chem. Chem. Phys. 2017, 19, 18704. doi: 10.1039/C7CP03862C  doi: 10.1039/C7CP03862C

    40. [40]

      Chen, M.; Kumar, D.; Yi, C. W; Goodman W. D. Science 2015, 310, 291. doi: 10.1126/science.1115800  doi: 10.1126/science.1115800

    41. [41]

      Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810. doi: 10.1038/nmat1223  doi: 10.1038/nmat1223

    42. [42]

      Ma, Y.; Diemant, T.; Bansmann, J.; Behm, R. J. Phys. Chem. Chem. Phys. 2011, 13, 10741. doi: 10.1039/c1cp00009h  doi: 10.1039/c1cp00009h

    43. [43]

      Tao, F.; Dag, S.; Wang, L.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Science 2010, 327, 850. doi: 10.1126/science.1182122  doi: 10.1126/science.1182122

    44. [44]

      Inukai, J.; Tryk, D. A.; Abe, T.; Wakisaka, M.; Uchida, H.; Watanabe, M. J. Am. Chem. Soc. 2013, 135, 1476. doi: 10.1021/ja309886p  doi: 10.1021/ja309886p

    45. [45]

      Toyoshima, R.; Yoshida, M.; Monya, Y.; Suzuki, K.; Amemiya, K.; Mase, K.; Simon Munc, B.; Kondoh, H. Phys. Chem. Chem. Phys. 2014, 16, 23564. doi: 10.1039/c4cp04318a  doi: 10.1039/c4cp04318a

    46. [46]

      Piccolo, L.; Loffreda, D.; Cadete Santos Aires, F. J.; Deranlot, C.; Jugnet, Y.; Sautet, P.; Bertolini, J. C. Surf. Sci. 2004, 566, 995. doi: 10.1016/j.susc.2004.06.042  doi: 10.1016/j.susc.2004.06.042

  • 加载中
    1. [1]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    11. [11]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    17. [17]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    18. [18]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

Metrics
  • PDF Downloads(14)
  • Abstract views(805)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return