Citation: HE Yan, LI Hao, ZHOU Li, XU Ting, PENG Changjun, LIU Honglai. Removal of Methyl Orange from Aqueous Solutions by a Novel Hyper-Cross-Linked Aromatic Triazine Porous Polymer[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 299-306. doi: 10.3866/PKU.WHXB201804172 shu

Removal of Methyl Orange from Aqueous Solutions by a Novel Hyper-Cross-Linked Aromatic Triazine Porous Polymer

  • Corresponding author: HE Yan, yanhe@ecit.edu.cn PENG Changjun, cjpeng@ecust.edu.cn
  • Received Date: 15 March 2018
    Revised Date: 9 April 2018
    Accepted Date: 10 April 2018
    Available Online: 10 March 2018

    Fund Project: the National Key Basic Research Program of China 2015CB251401the National Natural Science Foundation of China 21776069The project was supported by the National Natural Science Foundation of China (21476070, 21776069) and the National Key Basic Research Program of China (2015CB251401)the National Natural Science Foundation of China 21476070

  • Organic dyes, especially the harmful cationic dye methyl orange (MO), are emerging pollutants. The development of new materials for their efficient adsorption and removal is thus of great significance. Porous organic polymers (POPs) such as hyper-cross-linked polymers, covalent organic frameworks, conjugated microporous polymers, and polymers with intrinsic microporosity are a new class of materials constructed from organic molecular building blocks. To design POPs both with good porosity and task-specific functionalization is still a critical challenge. In this study, we have demonstrated a simple one-step method for the synthesis of the hyper-cross-linked aromatic triazine porous polymer (HAPP) via the Friedel-Crafts reaction. The resultant porous polymer was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, elemental analysis (EA), thermo-gravimetric analysis (TGA), solid-state 13C nuclear magnetic resonance (13C NMR), and nitrogen adsorption-desorption isotherms. The results show that HAPP is a rough, irregular morphology, porous organic polymer that is amorphous in nature. The novel polymer showed high Brunauer-Emmett-Teller surface area (of up to 104.36 m2∙g−1), porosity, and physicochemical stability. Owing to the presence of N heteroatom pore surfaces in the network, the material exhibited a maximum adsorption capacity of 249.3 mg∙g−1 for MO from aqueous solutions at room temperature. This is higher than that of some reported porous materials under the same conditions. To explain this phenomenon more clearly, theoretical quantum calculations were performed via the DFT method using Gaussian 09 software and Multiwfn version 3.4.1. It is performed to analyze the properties and electrostatic potential (ESP) of the HAPP monomer and MO. The results indicated that the N heteroatom of HAPP can easily develop strong interactions with MO, supporting the efficient adsorption of MO. The parameters studied include the physical and chemical properties of adsorption, pH, contact time, and initial concentrations. The percentage of MO removal increased as the pH was increased from 2 to 4. The optimum pH required for maximum adsorption was found to be 5.6. Adsorption kinetics data were modeled using the pseudo-first-order and pseudo-second-order models. The results indicate that the second-order model best describes the kinetic adsorption data. The adsorption isotherms revealed a good fit with the Langmuir model. More importantly, the HAPP can be regenerated effectively and recycled at least five times without significant loss of adsorption capacity. Therefore, it is believed that HAPPs with hierarchical porous structures, high surface areas, and physicochemical stability are promising candidates for the purification and treatment of dyes in solution.
  • 加载中
    1. [1]

      Boujaady, H. E.; Rhilassi, A. E.; Bennani-Ziatni, M.; Hamri, R. E.; Taitai, A.; Lacout, J. L. Desalination 2011, 275 (1), 10. doi: 10.1016/j.desal.2011.03.036  doi: 10.1016/j.desal.2011.03.036

    2. [2]

      Crini, G. Bioresour. Technol. 2006, 97 (9), 1061. doi: 10.1016/j.biortech.2005.05.001  doi: 10.1016/j.biortech.2005.05.001

    3. [3]

      Hameed, B. H.; Rahman, A. A. J. Hazard. Mater. 2008, 160 (2), 576. doi: 10.1016/j.jhazmat.2008.03.028  doi: 10.1016/j.jhazmat.2008.03.028

    4. [4]

      He, L.; Zhang, X. Q.; Lu, A. H. Acta Phys. -Chim. Sin. 2017, 33 (4), 709.  doi: 10.3866/PKU.WHXB201612201

    5. [5]

      Liu, X. L.; Song, J. M.; Dong, N.; Hu, G.; Yang, J.; Si, W.; Li, W. H. Acta Phys. -Chim. Sin. 2016, 32 (7), 1844.  doi: 10.3866/PKU.WHXB201604142

    6. [6]

      He, Y.; Xu, T.; Hu, J.; Peng, C. J.; Yang, Q.; Wang, H. L.; Liu, H. L. RSC Adv. 2017, 7 (48), 30500. doi: 10.1039/c7ra04649a  doi: 10.1039/c7ra04649a

    7. [7]

      Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. J. Hazard. Mater. 2010, 177 (1), 70. doi: 10.1016/j.jhazmat.2009.12.047  doi: 10.1016/j.jhazmat.2009.12.047

    8. [8]

      Gupta, V. K.; Gupta, B.; Rastogi, A.; Agarwal, S.; Nayak, A. J. Hazard. Mater. 2011, 186 (1), 891. doi: 10.1016/j.jhazmat.2010.11.091  doi: 10.1016/j.jhazmat.2010.11.091

    9. [9]

      Annadurai, G.; Juang, R. S.; Lee, D. J. J. Hazard. Mater. 2002, 92 (3), 263. doi: 10.1016/S0304-3894(02)00017-1  doi: 10.1016/S0304-3894(02)00017-1

    10. [10]

      Ni, Z. M.; Xia, S. J.; Wang, L. G.; Xing, F. F.; Pan, G. X. J. Colloid Interface Sci. 2007, 316 (2), 284. doi: 10.1016/j.jcis.2007.07.045  doi: 10.1016/j.jcis.2007.07.045

    11. [11]

      An, W. K.; Wu, L. L.; Jin, Q.; Shi, L. J.; Pan, Z. L. Univ. Chem. 2017, 32 (12), 1.  doi: 10.3866/PKU.DXHX201706036

    12. [12]

      Umm, H.; Tawsif, A. S.; Tan, C. J.; Areisman, S.; Bee, C. A.; Amalina, M. A. Carbohydr. Polym. 2017, 157 (10), 1568. doi: 10.1016/j.carbpol.2016.11.037  doi: 10.1016/j.carbpol.2016.11.037

    13. [13]

      Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310 (5751), 1166. doi: 10.1126/science.1120411  doi: 10.1126/science.1120411

    14. [14]

      Wood, C. D.; Tan, B.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stockel, E.; et al. Chem. Mater. 2007, 19 (8), 2034. doi: 10.1021/cm070356a  doi: 10.1021/cm070356a

    15. [15]

      McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43 (12), 5163. doi: 10.1021/ma1006396  doi: 10.1021/ma1006396

    16. [16]

      Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42 (20), 8012. doi: 10.1039/c3cs60160a  doi: 10.1039/c3cs60160a

    17. [17]

      Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M. Angew. Chem. Int. Ed. 2009, 48 (50), 9621. doi: 10.1002/anie.200904637  doi: 10.1002/anie.200904637

    18. [18]

      Miao, L.; Zhu, D. Z.; Zhao, Y. H.; Liu, M. X.; Duan, H.; Xiong, W.; Zhu, Q. J.; Li, L. C.; Lv, Y. K.; Gan, L. H. Micropor. Mesopor. Mater. 2017, 253, 1. doi: 10.1016/j.micromeso.2017.06.032  doi: 10.1016/j.micromeso.2017.06.032

    19. [19]

      Qian, J.; Liu, M.; Gan, L.; Tripathi, P. K.; Zhu, D.; Xu, Z.; Hao, Z.; Chen, L.; Wright, D. S. Chem. Commun. 2013, 49 (29), 3043. doi: 10.1039/c3cc41113c  doi: 10.1039/c3cc41113c

    20. [20]

      Lu, W. J.; Huang, S. Z.; Miao, L.; Liu, M. X.; Zhu, D. Z.; Li, L. C.; Duan, H.; Xu, Z. J.; Gan, L. H. Chin. Chem. Lett. 2017, 28 (6), 1324. doi: 10.1016/j.cclet.2017.04.007  doi: 10.1016/j.cclet.2017.04.007

    21. [21]

      Chen, Q.; Luo, M.; Hammershoj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C. G.; Han, B. H. J. Am. Chem. Soc. 2012, 134 (14), 6084. doi: 10.1021/ja300438w  doi: 10.1021/ja300438w

    22. [22]

      Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Adv. Mater. 2012, 24 (42), 5703. doi: 10.1002/adma.201202447  doi: 10.1002/adma.201202447

    23. [23]

      Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Adv. Mater. 2012, 24 (25), 3390. doi: 10.1002/adma.201200804  doi: 10.1002/adma.201200804

    24. [24]

      Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Angew. Chem. Int. Ed. 2014, 53 (19), 4850. doi: 10.1002/anie.201402141  doi: 10.1002/anie.201402141

    25. [25]

      Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. J. Am. Chem. Soc. 2015, 137 (26), 8352. doi: 10.1021/jacs.5b04147  doi: 10.1021/jacs.5b04147

    26. [26]

      Yang, R. X.; Wang, T. T.; Deng, W. Q. Sci. Rep. 2015, 5, 10155. doi: 10.1038/srep10155  doi: 10.1038/srep10155

    27. [27]

      Li, B.; Gong, R.; Wang, W.; Huang, X.; Wang, Z.; Li, H.; Hu, C.; Tan, B. Macromolecules 2011, 44 (8), 2410. doi: 10.1021/ma200630s  doi: 10.1021/ma200630s

    28. [28]

      Qiao, Z. A.; Chai, S. H.; Nelson, K.; Bi, Z.; Chen, J.; Mahurin, S. M.; Zhu, X.; Dai, S. Nat. Commun. 2014, 5 (4), 3705. doi: 10.1038/ncomms4705  doi: 10.1038/ncomms4705

    29. [29]

      Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2012, 134 (26), 10741. doi: 10.1021/ja301926h  doi: 10.1021/ja301926h

    30. [30]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, 2009.

    31. [31]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

    32. [32]

      Mayagoitia, V.; Rojas, F.; Kornhauser, I. J. Chem. Soc. Faraday Trans. 1985, 81 (12), 2931. doi: 10.1039/F19858102931  doi: 10.1039/F19858102931

    33. [33]

      Qin, Q.; Ma, J.; Liu, K. J. Hazard. Mater. 2009, 162 (1), 133. doi: 10.1016/j.jhazmat.2008.05.016  doi: 10.1016/j.jhazmat.2008.05.016

    34. [34]

      Ai, L.; Zhang, C.; Meng, L. J. Chem. Eng. Data 2011, 56 (11), 4217. doi: 10.1021/je200743u  doi: 10.1021/je200743u

    35. [35]

      Hameed, B. H.; Din, A. T.; Ahmad, A. L. J. Hazard. Mater. 2007, 141 (3), 819. doi: 10.1016/j.jhazmat.2006.07.049  doi: 10.1016/j.jhazmat.2006.07.049

    36. [36]

      Bhattacharyya, K. G.; Sharma, A. Dyes Pigm. 2005, 65 (1), 51. doi: 10.1016/j.dyepig.2004.06.016  doi: 10.1016/j.dyepig.2004.06.016

    37. [37]

      Bhattacharyya, K. G.; Sharma, A. J. Hazard. Mater. 2004, 113 (1), 97. doi: 10.1016/j.jhazmat.2004.05.034  doi: 10.1016/j.jhazmat.2004.05.034

    38. [38]

      Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E. Russ. J. Phys. Chem. A 2012, 86 (8), 1294. doi: 10.1134/S0036024412060180  doi: 10.1134/S0036024412060180

    39. [39]

      Qada, E. N. E.; Allen, S. J.; Walker, G. M. Chem. Eng. J. 2006, 124 (1), 103. doi: 10.1016/j.cej.2006.08.015  doi: 10.1016/j.cej.2006.08.015

    40. [40]

      Lahaye, J. Fuel 1998, 77 (6), 543. doi: 10.1016/S016-2361(97)00099-9  doi: 10.1016/S016-2361(97)00099-9

    41. [41]

      Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Orfao, J. J. M. Carbon 1999, 37 (9), 1379. doi: 10.1016/S0008-6223(98)00333-9  doi: 10.1016/S0008-6223(98)00333-9

    42. [42]

      Haque, E.; Jun, J. W.; Jhung, S. H. J. Hazard. Mater. 2011, 185 (1), 507. doi: 10.1016/j.jhazmat.2010.09.035  doi: 10.1016/j.jhazmat.2010.09.035

  • 加载中
    1. [1]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    2. [2]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    3. [3]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    4. [4]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    7. [7]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    8. [8]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    12. [12]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    13. [13]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    14. [14]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    15. [15]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    16. [16]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    17. [17]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    18. [18]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

Metrics
  • PDF Downloads(9)
  • Abstract views(488)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return