Citation: LIU Qiang, HAN Yong, CAO Yunjun, LI Xiaobao, HUANG Wugen, YU Yi, YANG Fan, BAO Xinhe, LI Yimin, LIU Zhi. In-situ APXPS and STM Study of the Activation of H2 on ZnO(1010) Surface[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1366-1372. doi: 10.3866/PKU.WHXB201804161 shu

In-situ APXPS and STM Study of the Activation of H2 on ZnO(1010) Surface

  • Corresponding author: LI Yimin, liym1@shanghaitech.edu.cn LIU Zhi, zliu2@mail.sim.ac.cn
  • Received Date: 14 March 2018
    Revised Date: 7 April 2018
    Accepted Date: 9 April 2018
    Available Online: 16 December 2018

    Fund Project: the Ministry of Science and Technology of China 2016YFA0202803The project was supported by the National Natural Science Foundation of China 11227902the Ministry of Science and Technology of China 2017YFB0602205the Strategic Priority Research Program of the Chinese Academy of Sciences XDB17020200The project was supported by the National Natural Science Foundation of China (11227902), the Ministry of Science and Technology of China(2017YFB0602205, 2016YFA0202803), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200)

  • Cu/ZnO/Al2O3 is one of the most widely used catalysts in industrial methanol synthesis. However, the reaction mechanism and the nature of the active sites on the catalyst for this reaction are still under debate. Thus, detailed information is needed to understand the catalytic processes occurring on the surface of this catalyst. H2 is one of the reaction gases in methanol synthesis. Studies of the activation and dissociation behaviors of H2 on ZnO surfaces are of great importance in understanding the catalytic mechanism of methanol synthesis. In this work, the activation and dissociation processes of H2 on a ZnO(1010) single crystal surface were investigated in-situ using ambient-pressure X-ray photoelectron spectroscopy (APXPS) and scanning tunneling microscopy (STM), two powerful surface characterization techniques. In the APXPS experiments, results indicated the formation of hydroxyl (OH) species on the ZnO single crystal surface at room temperature in 0.3 mbar (1 mbar = 100 Pa) H2 atmosphere. Meanwhile, STM measurements showed that the ZnO surface was reconstructed from a (1×1) to a (2×1) structure upon introduction of H2. These observations revealed adsorption behaviors of H2 the same as those of atomic H on a ZnO(1010) surface as seen in previous studies, which could be evidence of the dissociative adsorption of H2 on a ZnO surface. However, H2O adsorption on ZnO surfaces can also result in the formation of OH species, which can be observed using XPS. The STM results show that the exposure of H2O also leads to the reconstruction from a (1×1) to a (2×1) structure on the ZnO(1010) surface upon H2 introduction. Hence, it is necessary to exclude the influence of H2O in this work, because there may be trace amounts of H2O in the H2 gas. Therefore, we performed a comparative study of H2 and H2O on ZnO(1010) single crystal surface. A downward band bending of 0.3 eV was observed on the ZnO surface in 0.3 mbar H2 atmosphere using APXPS, while negligible band bending was shown in the case of the H2O atmosphere. Moreover, thermal stability studies revealed that the OH group formed in the H2 atmosphere desorbed at a higher temperature than the one resulting from H2O adsorption, meaning that the two OH groups formed on the ZnO surface were different. Results in this work provide evidence of the dissociative adsorption of H2 on the ZnO(1010) surface at room temperature and atmospheric pressure. This is in contrast to previous findings, in which no H2 dissociation on a ZnO(1010) surface under ultra-high vacuum conditions was observed, indicating that the activation of H2 on ZnO surfaces is a pressure dependent process.
  • 加载中
    1. [1]

      Wang, Z. L. J. Phys.: Condens. Matter 2004, 16, R829. doi: 10.1088/0953-8984/16/25/R01  doi: 10.1088/0953-8984/16/25/R01

    2. [2]

      Janotti, A.; Van de Walle, C. G. Rep. Prog. Phys. 2009, 72, 126501. doi: 10.1088/0034-4885/72/12/126501  doi: 10.1088/0034-4885/72/12/126501

    3. [3]

      Moezzi, A.; McDonagh, A. M.; Cortie, M. B. Chem. Eng. J. 2012, 185, 1. doi: 10.1016/j.cej.2012.01.076  doi: 10.1016/j.cej.2012.01.076

    4. [4]

      Wöll, C. Prog. Surf. Sci. 2007, 82, 55. doi: 10.1016/j.progsurf.2006.12.002  doi: 10.1016/j.progsurf.2006.12.002

    5. [5]

      Wang, Y. M.; Wöll, C. Chem. Soc. Rev. 2017, 46, 1875. doi: 10.1039/C6CS00914J  doi: 10.1039/C6CS00914J

    6. [6]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. -L; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    7. [7]

      Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Science 2016, 352, 969. doi: 10.1126/science.aaf0718  doi: 10.1126/science.aaf0718

    8. [8]

      Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    9. [9]

      Scarano, D.; Spoto, G.; Bordiga, S.; Zecchina, A.; Lamberti, C. Surf. Sci. 1992, 276, 281. doi: 10.1016/0039-6028(92)90716-J  doi: 10.1016/0039-6028(92)90716-J

    10. [10]

      Tang, C. G.; Spencer, M. J. S.; Barnard, A. S. Phys. Chem. Chem. Phys. 2014, 16, 22139. doi: 10.1039/C4CP03221G  doi: 10.1039/C4CP03221G

    11. [11]

      Becker, T.; Hövel, S.; Kunat, M.; Boas, C.; Burghaus, U.; Wöll, C. Surf. Sci. 2001, 486, L502. doi: 10.1016/S0039-6028(01)01120-7  doi: 10.1016/S0039-6028(01)01120-7

    12. [12]

      Eischens, R. P.; Pliskin, W. A.; Low, M. J. D. J. Catal. 1962, 1, 180. doi: 10.1016/0021-9517(62)90022-2  doi: 10.1016/0021-9517(62)90022-2

    13. [13]

      Kokes, R. J.; Dent, A. L.; Chang, C. C.; Dixon, L. T. J. Am. Chem. Soc. 1972, 94, 4429. doi: 10.1021/ja00768a005  doi: 10.1021/ja00768a005

    14. [14]

      Boccuzzi, F.; Borello, E.; Zecchina, A.; Bossi, A.; Camia, M. J. Catal. 1978, 51, 150. doi: 10.1016/0021-9517(78)90288-9  doi: 10.1016/0021-9517(78)90288-9

    15. [15]

      Griffin, G. L.; Yates Jr, J. T. J. Chem. Phys. 1982, 77, 3744. doi: 10.1063/1.444249  doi: 10.1063/1.444249

    16. [16]

      Griffin, G. L.; Yates Jr, J. T. J. Catal. 1982, 73, 396. doi: 10.1016/0021-9517(82)90112-9  doi: 10.1016/0021-9517(82)90112-9

    17. [17]

      Topsøe, H. J. Catal. 2003, 216, 155. doi: 10.1016/S0021-9517(02)00133-1  doi: 10.1016/S0021-9517(02)00133-1

    18. [18]

      Oosterbeek, H. Phys. Chem. Chem. Phys. 2007, 9, 3570. doi: 10.1039/B703003G  doi: 10.1039/B703003G

    19. [19]

      Vang, R. T.; Lægsgaard, E.; Besenbacher, F. Phys. Chem. Chem. Phys. 2007, 9, 3460. doi: 10.1039/B703328C  doi: 10.1039/B703328C

    20. [20]

      Starr, D. E.; Liu, Z.; Hävecker, M.; Knop-Gericke, A.; Bluhm, H. Chem. Soc. Rev. 2013, 42, 5833. doi: 10.1039/C3CS60057B  doi: 10.1039/C3CS60057B

    21. [21]

      Wang, Y.; Muhler, M.; Wöll, C. Phys. Chem. Chem. Phys. 2006, 8, 1521. doi: 10.1039/B515489H  doi: 10.1039/B515489H

    22. [22]

      Liu, Y.; Yang, F.; Zhang, Y.; Xiao, J. P.; Yu, L.; Liu, Q. F.; Ning, Y. X.; Zhou, Z. W.; Chen, H.; Huang, W. G.; et.al. Nat. Commun. 2017, 8, 14459. doi: 10.1038/ncomms14459  doi: 10.1038/ncomms14459

    23. [23]

      Biesinger, M. C.; Lau, L. W. W.; Gerson, A. R.; Smart, R. S. C. Appl. Surf. Sci. 2010, 257, 887. doi: 10.1016/j.apsusc.2010.07.086  doi: 10.1016/j.apsusc.2010.07.086

    24. [24]

      Gao, Y. K.; Traeger, F.; Shekhah, O.; Idriss, H.; Wöll, C. J. Colloid Interface Sci. 2009, 338, 16. doi: 10.1016/j.jcis.2009.06.008  doi: 10.1016/j.jcis.2009.06.008

    25. [25]

      Losurdo, M.; Giangregorio, M. M. Appl. Phys. Lett. 2005, 86, 091901. doi: 10.1063/1.1870103  doi: 10.1063/1.1870103

    26. [26]

      Newberg, J. T.; Goodwin, C.; Arble, C.; Khalifa, Y.; Boscoboinik, J. A.; Rani, S. J. Phys. Chem. B 2017, 122, 472. doi: 10.1021/acs.jpcb.7b03335  doi: 10.1021/acs.jpcb.7b03335

    27. [27]

      Meyer, B.; Marx, D.; Dulub, O.; Diebold, U.; Kunat, M.; Langenberg, D.; Wöll, C. Angew. Chem. Int. Ed. 2004, 43, 6641. doi: 10.1002/anie.200461696  doi: 10.1002/anie.200461696

    28. [28]

      Dulub, O.; Meyer, B.; Diebold, U. Phys. Rev. Lett. 2005, 95, 136101. doi: 10.1103/PhysRevLett.95.136101  doi: 10.1103/PhysRevLett.95.136101

    29. [29]

      Lu, Y. F.; Ni, H. Q.; Mai, Z. H.; Ren, Z. M. J. Appl. Phys. 2000, 88, 498. doi: 10.1063/1.373685  doi: 10.1063/1.373685

    30. [30]

      Viñes, F.; Iglesias-Juez, A.; Illas, F.; Fernández-García, M. J. Phys. Chem. C 2014, 118, 1492. doi: 10.1021/jp407021v  doi: 10.1021/jp407021v

    31. [31]

      Zhang, Z.; Yates Jr., J. T. Chem. Rev. 2012, 112, 5520. doi: 10.1021/cr3000626  doi: 10.1021/cr3000626

    32. [32]

      Mao, B.-H.; Crumlin, E.; Tyo, E. C.; Pellin, M. J.; Vajda, S.; Li, Y. M.; Wang, S. D.; Liu, Z. Catal. Sci. Technol. 2016, 6, 6778. doi: 10.1039/C6CY00575F  doi: 10.1039/C6CY00575F

    33. [33]

      Heinhold, R.; Williams, G. T.; Cooil, S. P.; Evans, D. A.; Allen, M. W. Phys. Rev. B 2013, 88, 235315. doi: 10.1103/PhysRevB.88.235315  doi: 10.1103/PhysRevB.88.235315

    34. [34]

      Porsgaard, S.; Jiang, P.; Borondics, F.; Wendt, S.; Liu, Z.; Bluhm, H.; Besenbacher, F.; Salmeron, M. Angew. Chem. Int. Ed. 2011, 50, 2266. doi: 10.1002/anie.201005377  doi: 10.1002/anie.201005377

    35. [35]

      Ozawa, K.; Mase, K. Phys. Rev. B 2011, 83, 125406. doi: 10.1103/PhysRevB.83.125406  doi: 10.1103/PhysRevB.83.125406

    36. [36]

      Ozawa, K.; Mase, K. Phys. Rev. B 2010, 81, 205322. doi: 10.1103/PhysRevB.81.205322  doi: 10.1103/PhysRevB.81.205322

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    4. [4]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    8. [8]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    11. [11]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    12. [12]

      Congqi ZhuBo LiuRuchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146

    13. [13]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    16. [16]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    17. [17]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    18. [18]

      Yongmei XiaZuming HeGang HeLianxiang ChenJuan ZhangJiangbin SuMuhammad Saboor SiddiqueXiaofei FuGuihua ChenWei Zhou . Lead-free perovskite Cs3Bi2Br9/FeS2 hollow core-shell Z-scheme heterojunctions toward optimized photothermal-photocatalytic H2 production. Chinese Chemical Letters, 2025, 36(10): 111521-. doi: 10.1016/j.cclet.2025.111521

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

Metrics
  • PDF Downloads(19)
  • Abstract views(1225)
  • HTML views(249)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return