Citation: GUO Xia, FAN Qunping, CUI Chaohua, ZHANG Zhiguo, ZHANG Maojie. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1279-1285. doi: 10.3866/PKU.WHXB201804098 shu

Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells

  • Corresponding author: ZHANG Maojie, mjzhang@suda.edu.cn
  • Received Date: 29 March 2018
    Revised Date: 2 April 2018
    Accepted Date: 2 April 2018
    Available Online: 9 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51573120, 51503135, 51773142, 91633301), and Jiangsu Provincial Natural Science Foundation, China (BK20150332)the National Natural Science Foundation of China 51773142the National Natural Science Foundation of China 51573120the National Natural Science Foundation of China 51503135Jiangsu Provincial Natural Science Foundation, China BK20150332the National Natural Science Foundation of China 91633301

  • Over the past two decades, bulk heterojunction polymer solar cells (PSCs) have attracted significant attention owing to their potential applications in the mass fabrication of flexible device panels by roll-to-roll printing. To improve the photovoltaic performance of PSCs, much effort has been devoted to the optimization of properties of donor-acceptor (D-A) type polymer donor materials. Until now, the development of high-performance donor polymers is mainly dependent on the design and synthesis of binary polymers with a regular D/A alternating skeleton. Compared to binary polymers, random terpolymers with three different donor or acceptor monomer units possess synergetic effects of their inherent properties, such as optical absorption ability, energy levels, crystallinity, charge mobility, and morphological compatibility with the n-OS acceptors with suitable adjustment of the molar ratio of the three monomers. However, the irregularity in the polymer backbone of the random terpolymers may have an adverse effect on molecular packing, crystallinity, and charge mobility. Therefore, design and synthesis of high-performance terpolymers for PSCs is a challenging task. In this study, a series of wide bandgap random terpolymers PSBTZ-80, PSBTZ-60, and PSBTZ-40 based on alkylthiothienyl substituted benzodithiophene as the donor unit and two weak electron-deficient acceptor units of 5, 6-difluorobenzotriazole (FBTz) and thiazolothiazole (TTz) were designed and synthesized for PSC applications. The optical, electrochemical, molecular packing, and photovoltaic properties of the polymers were effectively modulated by varying the FBTz:TTz molar ratio. Therefore, the PSC based on PSBTZ-60 as the donor material and narrow bandgap small molecule 3, 9-bis(2-methylene-(3-(1, 1-dicyanomethylene)-indanone))-5, 5, 11, 11-tetrakis(4-hexyl-phenyl)-dithieno[2, 3-d:2', 3'-d']-s-indaceno[1, 2-b:5, 6-b']di thiophene) (ITIC) as the acceptor, processed using halogen-free solvents, exhibited high power conversion efficiency (PCE) of 10.3% with high open-circuit voltage (Voc) of 0.91 V, improved short-circuit current density (Jsc) of 18.0 mA∙cm−2, and fill factor (FF) of 62.7%, which are superior to those of PSCs based on binary polymers PSBZ (a PCE of 8.1%, Voc of 0.89 V, Jsc of 14.7 mA∙cm−2, and FF of 61.5%) and PSTZ (a PCE of 8.5%, Voc of 0.96 V, Jsc of 14.9 mA∙cm−2, and FF of 59.1%). These results indicate that random terpolymerization is a simple and practical strategy for the development of high-performance polymer photovoltaic materials.
  • 加载中
    1. [1]

      Hou, J.; Ingan s, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119. doi: 10.1038/nmat5063  doi: 10.1038/nmat5063

    2. [2]

      Lin, Y.; Zhan, X. Adv. Energy Mater. 2015, 5, 1501063.doi: 10.1002/aenm.201501063  doi: 10.1002/aenm.201501063

    3. [3]

      Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Angew. Chem. Int. Ed. 2017, 56, 13503.doi: 10.1002/anie.201707678  doi: 10.1002/anie.201707678

    4. [4]

      Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. Adv. Mater. 2017, 29, 1703906. doi: 10.1002/adma.201703906  doi: 10.1002/adma.201703906

    5. [5]

      Xu, Z.; Fan, Q.; Meng, X.; Guo, X.; Su, W.; Ma, W.; Zhang, M.; Li, Y. Chem. Mater. 2017, 29, 4811.doi: 10.1021/acs.chemmater.7b00729  doi: 10.1021/acs.chemmater.7b00729

    6. [6]

      Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T. K.; Wan, J.; Lu, X.; Li, C. Z.; Chen, H. Energy Environ. Sci. 2016, 9, 604. doi: 10.1039/c5ee03481g  doi: 10.1039/c5ee03481g

    7. [7]

      Fei, Z.; Eisner, F. D.; Jiao, X.; Azzouzi, M.; R hr, J. A.; Han, Y.; Shahid, M.; Chesman, A. S. R.; Easton, C. D.; McNeill, C. R.; et al. Adv. Mater. 2018, 30, 1705209. doi: 10.1002/adma.201705209  doi: 10.1002/adma.201705209

    8. [8]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J.J. Am. Chem. Soc. 2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    9. [9]

      Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Thomas, P. R.; Zhang, M. J.; Li, Y. F. Sci. China Chem. 2018, doi: 10.1007/s11426-017-9199-1  doi: 10.1007/s11426-017-9199-1

    10. [10]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    11. [11]

      Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Adv. Mater. 2017, 30, 1703973. doi: 10.1002/adma.201703973  doi: 10.1002/adma.201703973

    12. [12]

      Lin, Y.; Zhang, Z.; Bai, H.; Wang, J.; Yao, Y.; Li, Y.; Zhu, D.; Zhan, X. Energy Environ. Sci. 2015, 8, 610. doi: 10.1039/c4ee03424d  doi: 10.1039/c4ee03424d

    13. [13]

      Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; et al. J. Am. Chem. Soc. 2017, 139, 1336. doi: 10.1021/jacs.6b12755  doi: 10.1021/jacs.6b12755

    14. [14]

      Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z. J. Am. Chem. Soc. 2017, 139, 3356.doi: 10.1021/jacs.7b00566  doi: 10.1021/jacs.7b00566

    15. [15]

      Shi, X.; Chen, J.; Gao, K.; Zuo, L.; Yao, Z.; Liu, F.; Tang, J.; Jen, A. K. Y. Adv. Energy Mater. 2018, doi: 10.1002/aenm.201702831  doi: 10.1002/aenm.201702831

    16. [16]

      Kan, B.; Zhang, J.; Liu, F.; Wan, X.; Li, C.; Ke, X.; Wang, Y.; Feng, H.; Zhang, Y.; Long, G.; et al. Adv. Mater. 2017, 30, 1704904.doi: 10.1002/adma.201704904  doi: 10.1002/adma.201704904

    17. [17]

      Luo, Z.; Bin, H.; Liu, T.; Zhang, Z.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; et al. Adv. Mater. 2018, doi: 10.1002/adma.201706124  doi: 10.1002/adma.201706124

    18. [18]

      Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R.J. Am. Chem. Soc. 2017, 139, 17114. doi: 10.1021/jacs.7b11278  doi: 10.1021/jacs.7b11278

    19. [19]

      Zhou, Z.; Liu, W.; Zhang, Z.; Liu, F.; Yan, H.; Zhu, X. Adv. Mater. 2017, 29, 1704510. doi: 10.1002/adma.201704510  doi: 10.1002/adma.201704510

    20. [20]

      Yang, Y.; Zhang, Z.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110  doi: 10.1021/jacs.6b09110

    21. [21]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Ingan s, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    22. [22]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 4657.doi: 10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    23. [23]

      Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; et al. Adv. Mater. 2017, 29, 1703344.doi: 10.1002/adma.201703344  doi: 10.1002/adma.201703344

    24. [24]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651  doi: 10.1038/ncomms13651

    25. [25]

      Fan, Q.; Su, W.; Guo, X.; Wang, Y.; Chen, J.; Ye, C.; Zhang, M.; Li, Y. J. Mater. Chem. A 2017, 5, 9204. doi: 10.1039/c7ta02075a  doi: 10.1039/c7ta02075a

    26. [26]

      Fan, Q.; Su, W.; Meng, X.; Guo, X.; Li, G.; Ma, W.; Zhang, M.; Li, Y. Sol. RRL 2017, 1, 1700020. doi: 10.1002/solr.201700020  doi: 10.1002/solr.201700020

    27. [27]

      Fan, Q.; Wang, Y.; Zhang, M.; Wu, B.; Guo, X.; Jiang, Y.; Li, W.; Guo, B.; Ye, C.; Su, W.; et al. Adv. Mater. 2018, 30, 1704546.doi: 10.1002/adma.201704546  doi: 10.1002/adma.201704546

    28. [28]

      Wang, Y.; Fan, Q.; Guo, X.; Li, W.; Guo, B.; Su, W.; Ou, X.; Zhang, M, J. Mater. Chem. A 2017, 5, 22180. doi: 10.1039/c7ta07785h  doi: 10.1039/c7ta07785h

    29. [29]

      Su, W.; Fan, Q.; Guo, X.; Meng, X.; Bi, Z.; Ma, W.; Zhang, M.; Li, Y. Nano Energy 2017, 38, 510. doi: 10.1016/j.nanoen.2017.05.060  doi: 10.1016/j.nanoen.2017.05.060

    30. [30]

      Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. Adv. Mater. 2017, 29, 1702291. doi: 10.1002/adma.201702291  doi: 10.1002/adma.201702291

    31. [31]

      Chen, S.; Liu, Y.; Zhang, L.; Chow, P. C. Y.; Wang, Z.; Zhang, G.; Ma, W.; Yan, H. J. Am. Chem. Soc. 2017, 139, 6298.doi: 10.1021/jacs.7b01606  doi: 10.1021/jacs.7b01606

    32. [32]

      Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Adv. Mater. 2018, 30, 1705870. doi: 10.1002/adma.201705870  doi: 10.1002/adma.201705870

    33. [33]

      Kang, T. E.; Kim, K. H.; Kim, B. J. J. Mater. Chem. A 2014, 2, 15252. doi: 10.1039/c4ta02426e  doi: 10.1039/c4ta02426e

    34. [34]

      Duan, C.; Gao, K.; Franeker, J. J.; Liu, F.; Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2016, 138, 10782. doi: 10.1021/jacs.6b06418  doi: 10.1021/jacs.6b06418

    35. [35]

      Fan, Q.; Liu, Y.; Xiao, M.; Su, W.; Gao, H.; Chen, J.; Tan, H.; Wang, Y.; Yang, R.; Zhu, W. J. Mater. Chem. C 2015, 3, 6240.doi: 10.1039/c5tc00785b  doi: 10.1039/c5tc00785b

    36. [36]

      Fan, Q.; Xu, X.; Liu, Y.; Su, W.; He, X.; Zhang, Y.; Tan, H.; Wang, Y.; Peng, Q.; Zhu, W. Polym. Chem. 2016, 7, 1747.doi: 10.1039/c5py01985k  doi: 10.1039/c5py01985k

    37. [37]

      Chen, S.; Cho, H. J.; Lee, J.; Yang, Y.; Zhang, Z. G.; Li, Y.; Yang, C. Adv. Energy Mater. 2017, 7, 1701125. doi: 10.1002/aenm.201701125  doi: 10.1002/aenm.201701125

    38. [38]

      Zhang, M.; Guo, X.; Zhang, S.; Hou, J. Adv. Mater. 2014, 26, 1118. doi: 10.1002/adma.201304427  doi: 10.1002/adma.201304427

    39. [39]

      Fan, Q.; Su, W.; Guo, X.; Guo, B.; Li, W.; Zhang, Y.; Wang, K.; Zhang, M.; Li, Y. Adv. Energy Mater. 2016, 6, 1600430.doi: 10.1002/aenm.201600430  doi: 10.1002/aenm.201600430

    40. [40]

      Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. Adv. Mater. 2015, 27, 4655. doi: 10.1002/adma.201502110  doi: 10.1002/adma.201502110

    41. [41]

      Blom, P. W.; Mihailetchi, V. D.; Koster, L. J.; Markov. D. E. Adv. Mater. 2007, 19, 1551. doi: 10.1002/adma.200601093  doi: 10.1002/adma.200601093

    42. [42]

      Fan, Q.; Xu, Z.; Guo, X.; Meng, X.; Li, W.; Su, W.; Ou, X.; Ma, W.; Zhang, M.; Li, Y. Nano Energy 2017, 40, 20.doi: 10.1016/j.nanoen.2017.07.047  doi: 10.1016/j.nanoen.2017.07.047

    43. [43]

      Fan, Q.; Su, W.; Guo, X.; Zhang, X.; Xu, Z.; Guo, B.; Jiang, L.; Zhang M.; Li Y. J. Mater. Chem. A 2017, 5, 5106.doi: 10.1039/c6ta11240d  doi: 10.1039/c6ta11240d

    44. [44]

      Fan, Q.; Zhu, Q.; Xu, Z.; Su, W.; Chen, J.; Wu, J.; Guo, X.; Ma, W.; Zhang, M.; Li, Y. Nano Energy 2018, 48, 413.doi: 10.1016/j.nanoen.2018.04.002  doi: 10.1016/j.nanoen.2018.04.002

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    3. [3]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    4. [4]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    5. [5]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    6. [6]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    7. [7]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    8. [8]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    11. [11]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    12. [12]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    13. [13]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    14. [14]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    15. [15]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    16. [16]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    17. [17]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    18. [18]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    19. [19]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    20. [20]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

Metrics
  • PDF Downloads(10)
  • Abstract views(726)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return