Citation: YANG Chunhe, TANG Aiwei, TENG Feng, JIANG Kejian. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1197-1201. doi: 10.3866/PKU.WHXB201804097 shu

Electrochemistry of Perovskite CH3NH3PbI3 Crystals

  • Corresponding author: YANG Chunhe, chy@bjtu.edu.cn
  • Received Date: 26 February 2018
    Revised Date: 15 March 2018
    Accepted Date: 4 April 2018
    Available Online: 9 November 2018

    Fund Project: the National Natural Science Foundation of China 61735004the National Natural Science Foundation of China 61674011The project was supported by the Scientific Research Fund of Beijing Jiaotong University (KSRC12006536) and the National Natural Science Foundation of China (61674011, 61735004)the Scientific Research Fund of Beijing Jiaotong University KSRC12006536

  • Perovskite CH3NH3PbI3 is an ionic crystal with suitable band gap and conductivity for optoelectronic applications. The sensitivity of the CH3NH3PbI3 crystal and its derivatives to chemical composition, film-forming process, and even moisture lead to difficulties in evaluating its electronic structure and redox behavior using electrochemical techniques. Nevertheless, full understanding of the electrochemical behavior of the perovskite crystal is certainly beneficial for tuning its redox properties and chemical stability, especially for device fabrication. We show that the band structure of CH3NH3PbI3 can be successfully evaluated based on electrochemical square wave voltammetry. The energy level of the bottom of the conduction band of the perovskite crystal was determined directly from the onset reduction potential with reference to the onset oxidation potential of ferrocene, and estimated to be −3.56 eV; the top of the valence band, at –5.07 eV, was determined indirectly after taking into consideration the bandgap, because the oxidation current of the iodide ions shields that corresponding to the valence band of the CH3NH3PbI3 crystal. The overlap of the oxidation currents from the iodide ions and the valence band of the crystal suggests that there are excess iodide ions in CH3NH3PbI3 not involved in the development of the valence band. In addition, the alternating current (AC) impedance spectra of CH3NH3PbI3 indicate that the iodide ions are not completely immobilized. These imply that the defects in the crystal are related to the iodide ions to a large extent. The electrochemistry of CH3NH3PbI3 in an organic electrolyte reveals its coupling degradation during the redox processes in square wave and cyclic voltammetry. The degradation reactions result from the reduction of lead ions and oxidation of iodide ions in the perovskite crystal. In electrochemical reduction, along with the reduction that occurs in the conduction band, the lead ions in the crystal are reduced to metallic lead, which introduces a phase change in the crystal, as revealed in cyclic voltammetry; the metallic lead can be re-oxidized electrochemically. In the case of electrochemical oxidation, the iodide ions, as well as the valence band of CH3NH3PbI3, lose electrons. The electrochemically generated iodine diffuses into the organic electrolyte gradually, which results in the loss of iodide ions in the crystal. Such loss of iodide ions continues during the cyclic redox reaction. Apparently, the electrochemical investigations on perovskite CH3NH3PbI3 show that the crystal is extremely reactive during the redox process; attention should be paid on controlling the excess iodide ions and the irreversible phase change resulting from the oxidation of lead ions.
  • 加载中
    1. [1]

      Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623. doi: 10.1021/jz4020162  doi: 10.1021/jz4020162

    2. [2]

      Grätzel, M. Acc. Chem. Res. 2017, 50(3), 487. doi: 10.1021/acs.accounts.6b00492  doi: 10.1021/acs.accounts.6b00492

    3. [3]

      Correa-Baena, J.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T.; Gr tzel, M.; Hagfeldt, A. Energy Environ. Sci. 2017, 10(3), 710. doi: 10.1039/c6ee03397k  doi: 10.1039/c6ee03397k

    4. [4]

      Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L. Adv. Mater. 2017, 29, 1701073. doi:10.1002/adma.201701073  doi: 10.1002/adma.201701073

    5. [5]

      Yang, W.; Park, B.; Jung, E.; Jeon, N.; Kim, Y.; Lee, D.; Shin, S.; Seo, J.; Kim, E.; Noh, J.; et al. Science 2017, 356(6345), 1376. doi: 10.1126/science.aan2301  doi: 10.1126/science.aan2301

    6. [6]

      Yin, W.; Yang, J.; Kang, J.; Yan, Y.; Wei, S. J. Mater. Chem. A 2015, 3(17), 8926. doi: 10.1039/c4ta05033a  doi: 10.1039/c4ta05033a

    7. [7]

      Berhe, T.; Su, W.; Chen, C.; Pan, C.; Cheng, J.; Chen, H.; Tsai, M.; Chen, L.; Dubale, A.; Hwang, B. Energy Environ. Sci. 2016, 9(2). doi: 10.1039/c5ee02733k  doi: 10.1039/c5ee02733k

    8. [8]

      Park, M.; Kornienko, N.; Reyes-Lillo, S.; Lai, M.; Neaton, J.; Yang, P.; Mathies, R. Nano Lett. 2017, 17(7). doi: 10.1021/acs.nanolett.7b00919  doi: 10.1021/acs.nanolett.7b00919

    9. [9]

      Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H.; Sarkar, A.; Nazeeruddin, M. K.; et al. Nat. Photonics 2013, 7, 486. doi: 10.1038/NPHOTON.2013.80  doi: 10.1038/NPHOTON.2013.80

    10. [10]

      Christian, J.; Fung, R.C.M.; Kamat, V. J. Am. Chem. Soc. 2014, 136, 758. doi: 10.1021/ja411014k|  doi: 10.1021/ja411014k|

    11. [11]

      Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Park, N. G. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591  doi: 10.1038/srep00591

    12. [12]

      Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. J. J. Phys. Chem. Lett. 2013, 4, 1532. doi: 10.1021/jz400638x  doi: 10.1021/jz400638x

    13. [13]

      Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gr tzel, M.J. Am. Chem. Soc. 2012, 134(42), 17396. doi: 10.1021/ja307789s  doi: 10.1021/ja307789s

    14. [14]

      Lindblad, R.; Bi, D.; Park, B.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M. J.; Rensmo, H. J. Phys. Chem. Lett. 2014, 5, 648. doi: 10.1021/jz402749f  doi: 10.1021/jz402749f

    15. [15]

      Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 103, 063903. doi: 10.1063/1.4864778  doi: 10.1063/1.4864778

    16. [16]

      Baike, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Gr tzel, M.; Whitec, T. J. J. Mater. Chem. A 2013, 1, 5628. doi: 10.1039/c3ta10518k  doi: 10.1039/c3ta10518k

    17. [17]

      Wang, Y.; Gould, T.; Dobson, J. F.; Zhang, H.; Yang, H.; Yao, X.; Zhao, H. Phys. Chem. Chem. Phys. 2014, 16, 1424. doi: 10.1039/c3cp54479f  doi: 10.1039/c3cp54479f

    18. [18]

      Kim, J.; Lee, S. H.; Lee, J. H.; Hong, K. H. J. Phys. Chem. Lett. 2014, 5, 1312. doi: 10.1021/jz500370k  doi: 10.1021/jz500370k

    19. [19]

      Umebayashi, T.; Asai, K. Phys. Rev. B 2003, 67, 155405. doi: 10.1103/PhysRevB.67.155405  doi: 10.1103/PhysRevB.67.155405

    20. [20]

      Kojima, A.; Teshima, K.; Shirai, y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131(17), 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    21. [21]

      Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. J. Mater. Chem. A 2014, 2(3), 705. doi: 10.1039/c3ta13606j  doi: 10.1039/c3ta13606j

    22. [22]

      Supasai, T.; Rujisamphan, N.; Ullrich, K.; Chemseddine, A.; Dttrich, T. Appl. Phys. Lett. 2013, 103, 183906. doi: 10.1063/1.4826116  doi: 10.1063/1.4826116

    23. [23]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    24. [24]

      Im, J. H.; Chung, J.; Kim, S. J.; Park, N. G. Nanoscale Res. Lett. 2012, 7, 353. doi: 10.1186/1556-276X-7-353  doi: 10.1186/1556-276X-7-353

    25. [25]

      Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.; Wojciechowski, K.; Zhang, W. J. Phys. Chem. Lett. 2014, 5, 1511. doi: 10.1021/jz500113x  doi: 10.1021/jz500113x

    26. [26]

      Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J. W.; Park, N. G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. J. Phys. Chem. Lett. 2014, 5, 2357. doi: 10.1021/jz5011187  doi: 10.1021/jz5011187

    27. [27]

      Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P.; Kiessling, J.; Kohler, A.; Vaynzof, Y.; Huettner, S. Adv. Mater. 2016, 28(12), 2446. doi: 10.1002/adma.201503832  doi: 10.1002/adma.201503832

    28. [28]

      Wang, Q.; Yun, J.; Zhang, M.; Chen, H.; Chen, Z.; Wang, L. J. Mater. Chem. A 2014, 2, 10355. doi: 10.1039/C4TA01105H  doi: 10.1039/C4TA01105H

    29. [29]

      Persson, I.; Lyczko, K.; Lundberg, D.; Eriksson, L.; Placzek, A. Inorg. Chem. 2011, 50(3), 1058. doi: 10.1021/ic1017714  doi: 10.1021/ic1017714

    30. [30]

      Bodo, E.; Postorino, P.; Mangialardo, S.; Piacente, G.; Ramondo, F.; Bosi, F.; Ballirano, F.; Caminiti, R. J. Phys. Chem. B 2011, 115, 13149. doi: 10.1021/jp2070002  doi: 10.1021/jp2070002

    31. [31]

      Yang, C.; Tang, A.; Teng, F. J. Electrochem. Soc. 2013, 160(2), H121. doi: 10.1149/2.064302jes  doi: 10.1149/2.064302jes

    32. [32]

      Gritzner, G. Pure Appl. Chem. 1990, 62(9), 1839. doi: 10.1351/pac199062091839  doi: 10.1351/pac199062091839

    33. [33]

      Scheidt, R. A.; Samu, G. F.; Janaky, C.; Kamat, P. V. J. Am. Chem. Soc. 2018, 140(1), 86. doi: 10.1021/jacs.7b10958  doi: 10.1021/jacs.7b10958

    34. [34]

      Yang, J.; Yin, W.; Park, J.; Wei, S. J. Mater. Chem. A 2016, 4(34), 13105. doi: 10.1039/c6ta03599j  doi: 10.1039/c6ta03599j

  • 加载中
    1. [1]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    2. [2]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    5. [5]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    6. [6]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    7. [7]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    8. [8]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    11. [11]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    12. [12]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    15. [15]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    16. [16]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    17. [17]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

Metrics
  • PDF Downloads(9)
  • Abstract views(607)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return