Citation: HUANG Peng, YUAN Ligang, LI Yaowen, ZHOU Yi, SONG Bo. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1264-1271. doi: 10.3866/PKU.WHXB201804096 shu

L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells

  • Corresponding author: LI Yaowen, ywli@suda.edu.cn ZHOU Yi, yizhou@suda.edu.cn SONG Bo, songbo@suda.edu.cn
  • Received Date: 27 February 2018
    Revised Date: 3 April 2018
    Accepted Date: 4 April 2018
    Available Online: 9 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51673139, 91633301), A Priority Academic Program Development of Jiangsu Higher Education Institutions, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Chinathe National Natural Science Foundation of China 91633301the National Natural Science Foundation of China 51673139

  • In the past decade, perovskite solar cells (Pero-SCs) have attracted a great deal of attention owing to their soaring power conversion efficiency (PCE), up to 22.7% in 2017. In p-i-n type Pero-SCs, one of the most commonly used hole transport layer (HTL) materials is poly(3, 4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT: PSS), which possesses a high coverage and an extremely smooth surface. However, the inferior electrical conductivity (or large series resistance) and lower work function (WF) of PEDOT:PSS relative to many other HTL materials limits the open-circuit voltages of Pero-SCs. Furthermore, the hygroscopic property and the acidic nature of PEDOT:PSS can readily cause the degradation of perovskite, and thereby affect the long-term stability of Pero-SCs. The abovementioned disadvantages can hinder the application of PEDOT:PSS in high-performance and stable Pero-SCs; therefore, many efforts have been made to modify PEDOT:PSS to prevent these disadvantages, for instance, adding various organic solvents, surfactants, salts, or acids to PEDOT:PSS as dopants. In this paper, we report a simple codoping method to modify PEDOT:PSS, i.e., employing L-3, 4-dihydroxyphenylalanine (DOPA) and dimethyl sulfoxide (DMSO) as codopants in PEDOT:PSS, and applying it as a HTL in p-i-n type Pero-SCs. Herein, DOPA and DMSO were mixed separately with PEDOT:PSS to obtain HTLs for comparison. The DMSO-doped PEDOT:PSS improved the conductivity of the PEDOT:PSS film, while the DOPA-doped PEDOT:PSS tuned the WF of the PEDOT:PSS film. Hence, codoping of DMSO and DOPA not only allows for a good match of the energy levels between PEDOT:PSS and the perovskite but also leads to an improvement in the conductivity of PEDOT:PSS. The champion PCE of the Pero-SCs increased from 13.35% to 17.54% after DOPA and DMSO were codoped in PEDOT:PSS. Owing to their aligned energy levels and enhanced charge transportation, the detailed photovoltaic parameters were greatly improved. Scanning electron microscope and X-ray diffraction were used to characterize the morphological change and crystallinity of the perovskite films. Morphological characterization also revealed that the density of grain boundaries in the perovskite films decreased, which should alleviate the charge recombination occurring in the photoactive layer. Both steady-state photoluminescence (PL) and time-resolved PL characterizations were carried out, and they indicated that nonradiative recombination increased for the perovskite films prepared on the doped PEDOT:PSS films. This result explains the improved short-circuit current density. Electrochemical impedance spectroscopy was employed to determine the resistances of the solar cells. The results are consistent with device performance and that reflected in the PL spectra.
  • 加载中
    1. [1]

      Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Nat. Rev. Mater. 2016, 1, 15007. doi: 10.1038/natrevmats.2015.7  doi: 10.1038/natrevmats.2015.7

    2. [2]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    3. [3]

      Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Nat. Phys. 2015, 11, 582. doi: 10.1038/nphys3357  doi: 10.1038/nphys3357

    4. [4]

      Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Nat. Photon. 2014, 9, 106. doi: 10.1038/nphoton.2014.284  doi: 10.1038/nphoton.2014.284

    5. [5]

      Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628. doi: 10.1039/c3ta10518k  doi: 10.1039/c3ta10518k

    6. [6]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    7. [7]

      Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; et al. Science 2017, 356, 1376. doi: 10.1126/science.aan2301  doi: 10.1126/science.aan2301

    8. [8]

      Hou, Y.; Du, X.; Scheiner, S.; McMeekin, D. P.; Wang, Z.; Li, N.; Killian, M. S.; Chen, H.; Richter, M.; Levchuk, I.; et al. Science 2017, 358, 1192. doi: 10.1126/science.aao5561  doi: 10.1126/science.aao5561

    9. [9]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989. doi: 10.1039/C5EE03874J  doi: 10.1039/C5EE03874J

    10. [10]

      Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Nat. Commun. 2015, 6, 7747. doi: 10.1038/ncomms8747  doi: 10.1038/ncomms8747

    11. [11]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 341, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    12. [12]

      Su, P. Y.; Huang, L. B.; Liu, J. M.; Chen, Y. F.; Xiao, L. M.; Kuang, D. B.; Mayor, M.; Su, C. Y. J. Mater. Chem. A 2017, 5, 1913. doi: 10.1039/c6ta09314k  doi: 10.1039/c6ta09314k

    13. [13]

      Hsiao, S. Y.; Lin, H. L.; Lee, W. H.; Tsai, W. L.; Chiang, K. M.; Liao, W. Y.; Ren-Wu, C. Z.; Chen, C. Y.; Lin, H. W. Adv. Mater. 2016, 28, 7013. doi: 10.1002/adma.201601505  doi: 10.1002/adma.201601505

    14. [14]

      Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8, 1602. doi: 10.1039/c5ee00120j  doi: 10.1039/c5ee00120j

    15. [15]

      Liu, X. P.; Kong, F. T.; Chen, W. C.; Yu, T.; Guo, F. L.; Chen, J.; Dai, S. Y. Acta Phys. -Chim. Sin. 2016, 32, 1347. doi: 10.3866/PKU.WHXB201603143  doi: 10.3866/PKU.WHXB201603143

    16. [16]

      Xu, J. H.; Yang, Y. J.; Jiang, Y. D.; Yu, J. S. Acta Phys. -Chim. Sin. 2009, 25, 19. doi: 10.3866/PKU.WHXB20090104  doi: 10.3866/PKU.WHXB20090104

    17. [17]

      Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. Adv. Mater. 2013, 25, 3727. doi: 10.1002/adma.201301327  doi: 10.1002/adma.201301327

    18. [18]

      Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. ACS Appl. Mater. Interfaces 2015, 7, 6230. doi: 10.1021/acsami.5b00468  doi: 10.1021/acsami.5b00468

    19. [19]

      Wu, C. G.; Chiang, C. H.; Tseng, Z. L.; Nazeeruddin, M. K.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2015, 8, 2725. doi: 10.1039/c5ee00645g  doi: 10.1039/c5ee00645g

    20. [20]

      De Jong, M. P.; van Ijzendoorn, L. J.; de Voigt, M. J. A. Appl. Phys. Lett. 2000, 77, 2255. doi: 10.1063/1.1315344  doi: 10.1063/1.1315344

    21. [21]

      Cheng, P.; Zhan, X. Chem. Soc. Rev. 2016, 45, 2544. doi: 10.1039/c5cs00593k  doi: 10.1039/c5cs00593k

    22. [22]

      Akbulatov, A. F.; Frolova, L. A.; Griffin, M. P.; Gearba, I. R.; Dolocan, A.; Vanden Bout, D. A.; Tsarev, S.; Katz, E. A.; Shestakov, A. F.; Stevenson, K. J.; et al.Adv. Energy Mater. 2017, 7, 1700476. doi: 10.1002/aenm.201700476  doi: 10.1002/aenm.201700476

    23. [23]

      Li, Y.; Xu, Z.; Zhao, S.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.; Li, X.; et al. Small 2016, 12, 4902. doi: 10.1002/smll.201601603  doi: 10.1002/smll.201601603

    24. [24]

      Kakavelakis, G.; Alexaki, K.; Stratakis, E.; Kymakis, E. RSC Adv. 2017, 7, 12998. doi: 10.1039/c7ra00274b  doi: 10.1039/c7ra00274b

    25. [25]

      Li, J. F.; Zhao, C.; Zhang, H.; Tong, J. F.; Zhang, P.; Yang, C. Y.; Xia, Y. J.; Fan, D. W.Chinese Phys. B 2016, 25, 028402. doi: 10.1088/1674-1056/25/2/028402  doi: 10.1088/1674-1056/25/2/028402

    26. [26]

      Huang, X.; Wang, K.; Yi, C.; Meng, T.; Gong, X. Adv. Energy Mater. 2016, 6, 1501773. doi: 10.1002/aenm.201501773  doi: 10.1002/aenm.201501773

    27. [27]

      Huang, D.; Goh, T.; Kong, J.; Zheng, Y.; Zhao, S.; Xu, Z.; Taylor, A. D. Nanoscale 2017, 9, 4236. doi: 10.1039/c6nr08375g  doi: 10.1039/c6nr08375g

    28. [28]

      Yan, P. R.; Huang, W. J.; Yang, S. H. Chem. Phys. Lett. 2017, 669, 143. doi: 10.1016/j.cplett.2016.12.036  doi: 10.1016/j.cplett.2016.12.036

    29. [29]

      Sun, W.; Li, Y.; Xiao, Y.; Zhao, Z.; Ye, S.; Rao, H.; Ting, H.; Bian, Z.; Xiao, L.; Huang, C.; et al. Org. Electron. 2017, 46, 22. doi: 10.1016/j.orgel.2017.03.019  doi: 10.1016/j.orgel.2017.03.019

    30. [30]

      Lee, I.; Kim, G. W.; Yang, M.; Kim, T. S. ACS Appl. Mater. Interfaces 2016, 8, 302. doi: 10.1021/acsami.5b08753  doi: 10.1021/acsami.5b08753

    31. [31]

      Huang, P.; Liu, Y.; Zhang, K.; Yuan, L.; Li, D.; Hou, G.; Dong, B.; Zhoua, Y.; Song, B.; Li, Y. J. Mater. Chem. A 2017, 5, 24275. doi: 10.1039/c7ta08827b.  doi: 10.1039/c7ta08827b

    32. [32]

      Nayak, P. K.; Moore, D. T.; Wenger, B.; Nayak, S.; Haghighirad, A. A.; Fineberg, A.; Noel, N. K.; Reid, O. G.; Rumbles, G.; Kukura, P.; et al. Nat. Commun. 2016, 7, 13303. doi: 10.1038/ncomms13303  doi: 10.1038/ncomms13303

    33. [33]

      Chen, J. D.; Cui, C.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y.; Tang, J. X. Adv. Mater. 2015, 27, 1035. doi: 10.1002/adma.201404535  doi: 10.1002/adma.201404535

    34. [34]

      Wu, R.; Yang, B.; Zhang, C.; Huang, Y.; Cui, Y.; Liu, P.; Zhou, C.; Hao, Y.; Gao, Y.; Yang, J. J. Phys. Chem. C 2016, 120, 6996. doi: 10.1021/acs.jpcc.6b00309  doi: 10.1021/acs.jpcc.6b00309

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

Metrics
  • PDF Downloads(10)
  • Abstract views(1216)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return