Citation: WANG Yan, LI Xiong, HU Shanwei, XU Qian, JU Huanxin, ZHU Junfa. Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1381-1389. doi: 10.3866/PKU.WHXB201804092 shu

Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2

  • Corresponding author: HU Shanwei, husw@ustc.edu.cn ZHU Junfa, jfzhu@ustc.edu.cn
  • Received Date: 14 March 2018
    Revised Date: 2 April 2018
    Accepted Date: 3 April 2018
    Available Online: 9 December 2018

    Fund Project: China Postdoctoral Science Foundation BH2310000032The project was supported by the National Natural Science Foundation of China 21403205National Key Technologies R & D Program of China 2017YFA0403402The project was supported by the National Natural Science Foundation of China (U1732272, 21473178, 21403205), National Key Technologies R & D Program of China (2017YFA0403402), and China Postdoctoral Science Foundation (BH2310000032)The project was supported by the National Natural Science Foundation of China 21473178The project was supported by the National Natural Science Foundation of China U1732272

  • CeO2-based catalysts are promising for use in various important chemical reactions involving CO2, such as the dry reforming of methane to produce synthesis gas and methanol. CeO2 has a superior ability to store and release oxygen, which can improve the catalytic performance by suppressing the formation of coke. Although the adsorption and activation behavior of CO2 on the CeO2 surface has been extensively investigated in recent years, the intermediate species formed from CO2 on ceria has not been clearly identified. The reactivity of the ceria surface to CO2 has been reported to be tuned by introducing CaO, which increases the number of basic sites for the ceria-based catalysts. However, the mechanism by which Ca2+ ions affect CO2 decomposition is still debated. In this study, the morphologies and electronic properties of stoichiometric CeO2(111), partially reduced CeO2-x(111) (0 < x < 0.5), and calcium-doped ceria model catalysts, as well as their interactions with CO2, were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, and synchrotron radiation photoemission spectroscopy. Stoichiometric CeO2(111) and partially reduced CeO2-x(111) films were epitaxially grown on a Cu(111) surface. STM images show that the stoichiometric CeO2 film exhibits large, flat terraces that completely cover the Cu(111) surface. The reduced CeO2-x film also has a flat surface and an ordered structure, but dark spaces are observed on the film. Different Ca-doped ceria films were prepared by physical vapor deposition of metallic Ca on CeO2(111) at room temperature and subsequent annealing to 600 or 800 K in ultrahigh vacuum. The different preparation procedures produce samples with various surface components, oxidation states, and structures. Our results indicate that the deposition of metallic Ca on CeO2 at room temperature leads to a partial reduction of Ce from the +4 to the +3 state, accompanied by the oxidation of Ca to Ca2+. Large CaO nanofilms are observed on CeO2 upon annealing to 600 K. However, small CaO nanoislands appear near the step edges and more Ca2+ ions migrate into the subsurface of CeO2 upon annealing to 800 K. In addition, different surface-adsorbed species are identified after CO2 adsorption on ceria (CeO2 and reduced CeO2-x) and Ca-doped ceria films. CO2 adsorption on the stoichiometric CeO2 and partially reduced CeO2-x surfaces leads to the formation of surface carboxylate. Moreover, the surface carboxylate species is more easily formed on reduced CeO2-x with enhanced thermal stability than on stoichiometric CeO2. On Ca-doped ceria films, the presence of Ca2+ ions is observed to be beneficial for CO2 adsorption; further, the carbonate species is identified.
  • 加载中
    1. [1]

      Huang, T. J.; Jhao, S. Y. Appl. Catal. A 2006, 302, 325. doi: 10.1016/j.apcata.2006.02.027  doi: 10.1016/j.apcata.2006.02.027

    2. [2]

      Stacchiola, D. J. Acc. Chem. Res. 2015, 48, 2151. doi: 10.1021/acs.accounts.5b00200  doi: 10.1021/acs.accounts.5b00200

    3. [3]

      Rostrup-Nielsen, J. R. Catal. Today 1997, 37, 225. doi: 10.1016/S0920-5861(97)00016-3  doi: 10.1016/S0920-5861(97)00016-3

    4. [4]

      Wang, X.; Gorte, R. J. Appl. Catal. A 2002, 224, 209. doi: 10.1016/S0926-860X(01)00783-9  doi: 10.1016/S0926-860X(01)00783-9

    5. [5]

      Kong, D.; Zhu, J.; Ernst, K. H. J. Phys. Chem. C 2016, 120, 5980. doi: 10.1021/acs.jpcc.5b10338  doi: 10.1021/acs.jpcc.5b10338

    6. [6]

      Hahn, K. R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J. J. Phys. Chem. C 2013, 117, 1701. doi: 10.1021/jp309565u  doi: 10.1021/jp309565u

    7. [7]

      Appel, L. G.; Eon, J. G.; Schmal, M. Catal. Lett. 1998, 56, 199. doi: 10.1023/a:1019098121432  doi: 10.1023/a:1019098121432

    8. [8]

      Jin, T.; Zhou, Y.; Mains, G. J.; White, J. M. J. Phys. Chem. 1987, 91, 5931. doi: 10.1021/j100307a023  doi: 10.1021/j100307a023

    9. [9]

      Valenzuela, R. X.; Bueno, G.; Solbes, A.; Sapiña, F.; Martínez, E.; Cortés Corberán, V. Top. Catal. 2001, 15, 181. doi: 10.1023/a:1016697615043  doi: 10.1023/a:1016697615043

    10. [10]

      Pacchioni, G.; Ricart, J. M.; Illas, F. J. Am. Chem. Soc. 1994, 116, 10152. doi: 10.1021/ja00101a038  doi: 10.1021/ja00101a038

    11. [11]

      Kadossov, E.; Burghaus, U. J. Phys. Chem. C 2008, 112, 7390. doi: 10.1021/jp800755q  doi: 10.1021/jp800755q

    12. [12]

      Solis, B. H.; Cui, Y.; Weng, X.; Seifert, J.; Schauermann, S.; Sauer, J.; Shaikhutdinov, S.; Freund, H. J. Phys. Chem. Chem. Phys. 2017, 19, 4231. doi: 10.1039/C6CP08504K  doi: 10.1039/C6CP08504K

    13. [13]

      Kang, M.; Wu, X.; Zhang, J.; Zhao, N.; Wei, W.; Sun, Y. RSC Adv. 2014, 4, 5583. doi: 10.1039/c3ra45595e  doi: 10.1039/c3ra45595e

    14. [14]

      Istadi; Amin, N. A. S. J. Molec. Catal. A: Chem. 2006, 259, 61. doi: 10.1016/j.molcata.2006.06.003  doi: 10.1016/j.molcata.2006.06.003

    15. [15]

      Xu, Q.; Hu, S.; Cheng, D.; Feng, X.; Han, Y.; Zhu, J. J. Chem. Phys. 2012, 136, 154705. doi: 10.1063/1.4704676  doi: 10.1063/1.4704676

    16. [16]

      Wang, W.; Hu, S.; Han, Y.; Pan, X.; Xu, Q.; Zhu, J. Surf. Sci. 2016, 653, 205. doi: 10.1016/j.susc.2016.07.007  doi: 10.1016/j.susc.2016.07.007

    17. [17]

      Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. Rev. Sci. Instrum. 2007, 78, 013705. doi: 10.1063/1.2432410  doi: 10.1063/1.2432410

    18. [18]

      Lu, J. L.; Gao, H. J.; Shaikhutdinov, S.; Freund, H. J. Surf. Sci. 2006, 600, 5004. doi: 10.1016/j.susc.2006.08.023  doi: 10.1016/j.susc.2006.08.023

    19. [19]

      Mullins, D. R.; Radulovic, P. V.; Overbury, S. H. Surf. Sci. 1999, 429, 186. doi: 10.1016/S0039-6028(99)00369-6  doi: 10.1016/S0039-6028(99)00369-6

    20. [20]

      Fukui, K. I.; Namai, Y.; Iwasawa, Y. Appl. Surf. Sci. 2002, 188, 252. doi: 10.1016/S0169-4332(01)00917-5  doi: 10.1016/S0169-4332(01)00917-5

    21. [21]

      Hu, S.; Wang, Y.; Wang, W.; Han, Y.; Fan, Q.; Feng, X.; Xu, Q.; Zhu, J. J. Phys. Chem. C 2015, 119, 3579. doi: 10.1021/jp511691p  doi: 10.1021/jp511691p

    22. [22]

      Campbell, C. T.; Peden, C. H. F.Science 2005, 309, 713. doi: 10.1126/science.1113955  doi: 10.1126/science.1113955

    23. [23]

      Mullins, D. R.; Overbury, S. H.; Huntley, D. R. Surf. Sci. 1998, 409, 307. doi: 10.1016/S0039-6028(98)00257-X  doi: 10.1016/S0039-6028(98)00257-X

    24. [24]

      Pfau, A.; Schierbaum, K. D. Surf. Sci. 1994, 321, 71. doi: 10.1016/0039-6028(94)90027-2  doi: 10.1016/0039-6028(94)90027-2

    25. [25]

      Skála, T.; Šutara, F.; Prince, K. C.; Matolín, V. J. Electron Spectrosc. Relat. Phenom. 2009, 169, 20. doi: 10.1016/j.elspec.2008.10.003  doi: 10.1016/j.elspec.2008.10.003

    26. [26]

      Skála, T.; Šutara, F.; Škoda, M.; Prince, K. C.; Matolín, V. J. Phys.: Condens. Matter 2009, 21, 055005. doi: 10.1088/0953-8984/21/5/055005  doi: 10.1088/0953-8984/21/5/055005

    27. [27]

      Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Phys. Chem. Chem. Phys. 2000, 2, 1319. doi: 10.1039/a908800h  doi: 10.1039/a908800h

    28. [28]

      Li, S. Q.; Hu, J. S.; Liu, B.; Zhang, G. H.; Cao, W.; Wang, Q.; Zhang, N. Cem. Concr. Res. 1999, 29, 1549. doi: 10.1016/S0008-8846(99)00111-8  doi: 10.1016/S0008-8846(99)00111-8

    29. [29]

      Alba-Rubio, A. C.; Santamaría-González, J.; Mérida-Robles, J. M.; Moreno-Tost, R.; Martín-Alonso, D.; Jiménez-López, A.; Maireles-Torres, P. Catal. Today 2010, 149, 281. doi: 10.1016/j.cattod.2009.06.024  doi: 10.1016/j.cattod.2009.06.024

    30. [30]

      Barin, I. Thermochemical Data of Pure Substances, 3rd ed. ; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 416–523.

    31. [31]

      Shao, X.; Myrach, P.; Nilius, N.; Freund, H. J. J. Phys. Chem. C 2011, 115, 8784. doi: 10.1021/jp201852x  doi: 10.1021/jp201852x

    32. [32]

      Shao, X.; Nilius, N.; Freund, H. J. J. Am. Chem. Soc. 2012, 134, 2532. doi: 10.1021/ja211396t  doi: 10.1021/ja211396t

    33. [33]

      Hu, S.; Wang, W.; Wang, Y.; Xu, Q.; Zhu, J. J. Phys. Chem. C 2015, 119, 18257. doi: 10.1021/acs.jpcc.5b04325  doi: 10.1021/acs.jpcc.5b04325

    34. [34]

      Skála, T.; Tsud, N.; Prince, K. C.; Matolín, V. Appl. Surf. Sci. 2011, 257, 3682. doi: 10.1016/j.apsusc.2010.11.107  doi: 10.1016/j.apsusc.2010.11.107

    35. [35]

      Škoda, M.; Cabala, M.; Cháb, V.; Prince, K. C.; Sedláček, L.; Skála, T.; Šutara, F.; Matolín, V. Appl. Surf. Sci. 2008, 254, 4375. doi: 10.1016/j.apsusc.2008.01.080  doi: 10.1016/j.apsusc.2008.01.080

    36. [36]

      Ginting, E.; Hu, S.; Thorne, J. E.; Zhou, Y.; Zhu, J.; Zhou, J. Appl. Surf. Sci. 2013, 283, 1. doi: 10.1016/j.apsusc.2013.05.009  doi: 10.1016/j.apsusc.2013.05.009

    37. [37]

      Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K. C.; et al. Nat. Mater. 2011, 10, 310. doi: 10.1038/nmat2976  doi: 10.1038/nmat2976

    38. [38]

      Skála, T.; Tsud, N.; Prince, K. C.; Matolín, V. J. Phys.: Condens. Matter 2011, 23, 215001. doi: 10.1088/0953-8984/23/21/215001  doi: 10.1088/0953-8984/23/21/215001

    39. [39]

      Staudt, T.; Lykhach, Y.; Tsud, N.; Skála, T.; Prince, K. C.; Matolín, V.; Libuda, J. J. Phys. Chem. C 2011, 115, 8716. doi: 10.1021/jp200382y  doi: 10.1021/jp200382y

    40. [40]

      Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R. Angew. Chem. Int. Ed. 2013, 52, 5101. doi: 10.1002/anie.201210077  doi: 10.1002/anie.201210077

    41. [41]

      Doyle, C. S.; Kendelewicz, T.; Carrier, X.; Brown, G. E. Surf. Rev. Lett. 1999, 06, 1247. doi: 10.1142/s0218625x99001402  doi: 10.1142/s0218625x99001402

    42. [42]

      Lykhach, Y.; Staudt, T.; Streber, R.; Lorenz, M. P. A.; Bayer, A.; Steinrück, H. P.; Libuda, J. Eur. Phys. J. B 2010, 75, 89. doi: 10.1140/epjb/e2010-00110-x  doi: 10.1140/epjb/e2010-00110-x

    43. [43]

      Hari, B.; Ding, X.; Guo, Y.; Deng, Y.; Wang, C.; Li, M.; Wang, Z. Mater. Lett. 2006, 60, 1515. doi: 10.1016/j.matlet.2005.11.062  doi: 10.1016/j.matlet.2005.11.062

    44. [44]

      Altrusaitis, J.; Usher, C. R.; Grassian, V. H. Phys. Chem. Chem. Phys. 2007, 9, 3011. doi: 10.1039/b617697f  doi: 10.1039/b617697f

    45. [45]

      Kovačević, V.; Lučić, S.; Hace, D.; Packham, D.; Šmit, I. Polym. Eng. Sci. 1999, 39, 1433. doi: 10.1002/pen.11534  doi: 10.1002/pen.11534

    46. [46]

      Voigts, F.; Bebensee, F.; Dahle, S.; Volgmann, K.; Maus-Friedrichs, W. Surf. Sci. 2009, 603, 40. doi: 10.1016/j.susc.2008.10.016  doi: 10.1016/j.susc.2008.10.016

    47. [47]

      Fujimori, Y.; Zhao, X.; Shao, X.; Levchenko, S. V.; Nilius, N.; Sterrer, M.; Freund, H. J. J. Phys. Chem. C 2016, 120, 5565. doi: 10.1021/acs.jpcc.6b00433  doi: 10.1021/acs.jpcc.6b00433

    48. [48]

      Miao, S. Appl. Surf. Sci. 2003, 220, 298. doi: 10.1016/S0169-4332(03)00830-4  doi: 10.1016/S0169-4332(03)00830-4

    49. [49]

      Ni, M.; Ratner, B. D. Surf. Interface Anal. 2008, 40, 1356. doi: 10.1002/sia.2904  doi: 10.1002/sia.2904

    50. [50]

      Shui, M. Appl. Surf. Sci.2003, 220, 359. doi: 10.1016/S0169-4332(03)00866-3  doi: 10.1016/S0169-4332(03)00866-3

    51. [51]

      Staudt, T.; Lykhach, Y.; Tsud, N.; Skála, T.; Prince, K. C.; Matolín, V.; Libuda, J. J. Catal. 2010, 275, 181. doi: 10.1016/j.jcat.2010.07.032  doi: 10.1016/j.jcat.2010.07.032

    52. [52]

      Šutara, F.; Cabala, M.; Sedláček, L.; Skála, T.; Škoda, M.; Matolín, V.; Prince, K. C.; Cháb, V. Thin Solid Films 2008, 516, 6120. doi: 10.1016/j.tsf.2007.11.013  doi: 10.1016/j.tsf.2007.11.013

    53. [53]

      Matolín, V.; Cabala, M.; Cháb, V.; Matolínová, I.; Prince, K. C.; Škoda, M.; Šutara, F.; Skála, T.; Veltruská, K. Surf. Interface Anal. 2008, 40, 225. doi: 10.1002/sia.2625  doi: 10.1002/sia.2625

    54. [54]

      Ochs, D.; Braun, B.; Maus-Friedrichs, W.; Kempter, V. Surf. Sci. 1998, 417, 406. doi: 10.1016/S0039-6028(98)00721-3  doi: 10.1016/S0039-6028(98)00721-3

    55. [55]

      Vohs, J. M.; Barteau, M. A. Surf. Sci. 1988, 201, 481. doi: 10.1016/0039-6028(88)90499-2  doi: 10.1016/0039-6028(88)90499-2

    56. [56]

      von Niessen, W.; Bieri, G.; Åsbrink, L. J. Electron Spectrosc. Relat. Phenom. 1980, 21, 175. doi: 10.1016/0368-2048(80)85046-8  doi: 10.1016/0368-2048(80)85046-8

    57. [57]

      Tegeler, E.; Kosuch, N.; Wiech, G.; Faessler, A. J. Electron Spectrosc. Relat. Phenom. 1980, 18, 23. doi: 10.1016/0368-2048(80)80002-8  doi: 10.1016/0368-2048(80)80002-8

  • 加载中
    1. [1]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    2. [2]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    3. [3]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    4. [4]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    5. [5]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    6. [6]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    11. [11]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    12. [12]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    13. [13]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    14. [14]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    15. [15]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    16. [16]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    17. [17]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    18. [18]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(11)
  • Abstract views(390)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return