Citation: HE Ping, YUAN Fanglong, WANG Zifei, TAN Zhanao, FAN Louzhen. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1250-1263. doi: 10.3866/PKU.WHXB201804041 shu

Growing Carbon Quantum Dots for Optoelectronic Devices

  • Corresponding author: TAN Zhanao, tanzhanao@mail.buct.edu.cn FAN Louzhen, lzfan@bnu.edu.cn
  • Received Date: 7 March 2018
    Revised Date: 30 March 2018
    Accepted Date: 2 April 2018
    Available Online: 4 November 2018

    Fund Project: the National Natural Science Foundation of China 21573019The project was supported by the National Natural Science Foundation of China (21233003, 21573019) and the Fundamental Research Funds for the Central Universities, Chinathe National Natural Science Foundation of China 21233003

  • As new types of carbon nanomaterials, carbon quantum dots (CQDs) have received widespread attention for their potential applications in optoelectronic device owing to their unique properties such as long hot-electron lifetime, high electron mobility, tunable bandgap, strong stable florescence, solution-processability, stability, non-toxicity, and low cost. Correspondingly, there has been several interesting developments in researches focusing on CQDs. In this review, we will present an update the on the latest research on the synthesis, morphology, structural characteristics, and optoelectronic properties of CQDs. The latter are determined by quantum confinement effect and surface defects. Using bottom-up synthesis methods, CQDs with higher crystallinity and less surface defects could be obtained by accurately designing the precursors and reaction conditions. The structures could be characterized by high-resolution transmission electron microscopy. Secondly, the latest progress on photoelectric devices, including light-emitting diodes (LEDs), solar cells (SCs), and photodetectors (PDs), are summarized in detail. CQDs-based LEDs are divided into photoluminescence (PL) and electroluminescence (EL) LEDs owing to their different excitation modes. Recently, PL LEDs leveled with developed QDs-based LEDs in both luminous efficiency and color rendering index (CRI). With the discovery of their bandgap emission, CQDs overcame carrier injection, which is determined by surface defects and molecule states, and presented excellent potential in EL applications. Moreover, their broad absorption in the ultraviolet-to-visible light range and high electron mobility make CQDs preferable for improving energy conversion efficiency of SCs and responsivity of PDs. Finally, we delineate current challenges on studying CQDs. Its indefinite fluorescence mechanism and structural characterizations limit the development of CQDs. Furthermore, large-scale synthesis methods for CQDs with high quantum yields and crystallinity are not yet established, which hinders their utility in optoelectronic devices. Moreover, CQDs with narrow emission bandwidth (full width at half maximum, FWHM ≤ 35 nm) still do not exist, which restrains their applications in display and laser. Hence, researches on CQDs-based optoelectronic applications are still in the first stages of development. We hope that this review will indicate future directions and encourage critical thinking to elicit new discoveries on CQDs from both fundamental and applied researches. Consequently, the potential of environment-friendly CQDs can be realized in optoelectronics and more areas.
  • 加载中
    1. [1]

      Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S. T.; Kang, Z. Carbon 2011, 49(2), 605. doi: 10.1016/j.carbon.2010.10.004  doi: 10.1016/j.carbon.2010.10.004

    2. [2]

      Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K.. Science 2007, 320(5874), 356. doi: 10.1126/science.1154663  doi: 10.1126/science.1154663

    3. [3]

      Fan, Z.; Li, S.; Yuan, F.; Fan, L.RSC Adv. 2015, 5(25), 19773. doi: 10.1039/C4RA17131D  doi: 10.1039/C4RA17131D

    4. [4]

      Song, Y.; Zhu, S.; Yang, B. RSC Adv. 2014, 4(52), 27184. doi: 10.1039/C3RA47994C  doi: 10.1039/C3RA47994C

    5. [5]

      Namdari, P.; Negahdari, B.; Eatemadi, A. Biomed. Pharmacother. 2017, 87, 209. doi: 10.1016/j.biopha.2016.12.108  doi: 10.1016/j.biopha.2016.12.108

    6. [6]

      Dong, Y.; Cai, J.; You, X.; Chi, Y. Analyst 2015, 140(22), 7468. doi: 10.1039/C5AN01487E  doi: 10.1039/C5AN01487E

    7. [7]

      Dong, Y.; Li, G.; Zhou, N.; Wang, R.; Chi, Y.; Chen, G. Anal. Chem. 2012, 84(19), 8378. doi: 10.1021/ac301945z  doi: 10.1021/ac301945z

    8. [8]

      Li, S.; Li, Y.; Zhu, J.; Fan, L.; Li, X. Anal. Chem. 2014, 86(20), 10201. doi: 10.1021/ac503183y  doi: 10.1021/ac503183y

    9. [9]

      Zhang, L.; Zhang, Z. Y.; Liang, R. P.; Li, Y. H.; Qiu, J. D. Anal. Chem. 2014, 86(9), 4423. doi: 10.1021/ac500289c  doi: 10.1021/ac500289c

    10. [10]

      Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. ACS Nano 2016, 10(1), 484. doi: 10.1021/acsnano.5b05406  doi: 10.1021/acsnano.5b05406

    11. [11]

      Lu, S.; Sui, L.; Liu, J.; Zhu, S.; Chen, A.; Jin, M.; Yang, B. Adv Mater. 2017, 29, doi: 1603443. 10.1002/adma.201603443

    12. [12]

      Zheng, X. T.; Than, A.; Ananthanaraya, A.; Kim, D. H.; Chen, P. ACS Nano 2013, 7(7), 6278. doi: 10.1021/nn4023137  doi: 10.1021/nn4023137

    13. [13]

      Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Angew. Chem. -Int. Ed. 2013, 125(14), 3953. doi: 10.1002/ange.201300519  doi: 10.1002/ange.201300519

    14. [14]

      Fan, Z.; Zhou, S.; Garcia, C.; Fan, L.; Zhou, J. Nanoscale 2017, 9(15), 4928. doi: 10.1039/C7NR00888K  doi: 10.1039/C7NR00888K

    15. [15]

      Liu, Y.; Zhou, S.; Fan, L.; Fan, H. Microchim. Acta 2016, 183(9), 1. doi: 10.1007/s00604-016-1909-1  doi: 10.1007/s00604-016-1909-1

    16. [16]

      Yuan, F.; Ding, L.; Li, Y.; Li, X.; Fan, L.; Zhou, S.; Fang, D.; Yang, S. Nanoscale 2015, 7(27), 11727. doi: 10.1039/C5NR02007G  doi: 10.1039/C5NR02007G

    17. [17]

      Kwon, W.; Kim, Y. H.; Lee, C. L.; Lee, M.; Choi, H. C.; Lee, T. W.; Rhee, S. W. Nano Lett. 2014, 14(3), 1306. doi: 10.1021/nl404281h  doi: 10.1021/nl404281h

    18. [18]

      Li, X.; Liu, Y.; Song, X.; Wang, H.; Gu, H.; Zeng, H. Angew. Chem. -Int. Ed. 2015, 54(6), 1759. doi: 10.1002/anie.201406836  doi: 10.1002/anie.201406836

    19. [19]

      Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Adv. Funct. Mater. 2015, 25(31), 4929. doi: 10.1002/adfm.201501250  doi: 10.1002/adfm.201501250

    20. [20]

      Sun, M.; Qu, S.; Hao, Z.; Ji, W.; Jing, P.; Zhang, H.; Zhang, L.; Zhao, J.; Shen, D. Nanoscale 2014, 6(21), 13076. doi: 10.1039/C4NR04034A  doi: 10.1039/C4NR04034A

    21. [21]

      Gao, P.; Ding, K.; Wang, Y.; Ruan, K.; Diao, S.; Zhang, Q.; Sun, B.; Jie, J. J. Phys. Chem. C 2014, 118(10), 5164. doi: 10.1021/jp412591k  doi: 10.1021/jp412591k

    22. [22]

      Kwon, W.; Lee, G.; Do, S.; Joo, T.; Rhee, S. W. Small 2014, 10(3), 506. doi: 10.1002/smll.201301770  doi: 10.1002/smll.201301770

    23. [23]

      Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. J. Mater. Chem. 2011, 22(4), 1265. doi: 10.1039/C1JM14112K  doi: 10.1039/C1JM14112K

    24. [24]

      Yan, X.; Cui, X.; Li, B.; Li, L. S. Nano Lett. 2010, 10(5), 1869. doi: 10.1021/nl101060  doi: 10.1021/nl101060

    25. [25]

      Xie, C.; Nie, B.; Zeng, L.; Liang, F. X.; Wang, M. Z.; Luo, L.; Feng, M.; Yu, Y.; Wu, C. Y.; Wu, Y. ACS Nano 2014, (4), 4015. doi: 10.1021/nn501001j  doi: 10.1021/nn501001j

    26. [26]

      Zhang, Q.; Jie, J.; Diao, S.; Shao, Z.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W.; Xia, H.; Yuan, X.ACS Nano 2015, 9(2), 1561. doi: 10.1021/acsnano.5b00437  doi: 10.1021/acsnano.5b00437

    27. [27]

      Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. Science 2015, 347(6225), 970. doi: 10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    28. [28]

      Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj, R.; Chand, S. J. Am. Chem. Soc. 2011, 133(26), 9960. doi: 10.1021/ja2036749  doi: 10.1021/ja2036749

    29. [29]

      Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Adv Mater. 2017, 29(3). doi: 10.1002/adma.201604436  doi: 10.1002/adma.201604436

    30. [30]

      Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z. Small 2012, 8(2), 281. doi: 10.1002/smll.201101706  doi: 10.1002/smll.201101706

    31. [31]

      Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romeroaburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G. Nano Lett. 2012, 12(2), 844. doi: 10.1021/nl2038979  doi: 10.1021/nl2038979

    32. [32]

      Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126(40), 12736. doi: 10.1021/ja040082h  doi: 10.1021/ja040082h

    33. [33]

      Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. J. Am. Chem. Soc. 2006, 128(24), 7756. doi: 10.1021/ja062677d  doi: 10.1021/ja062677d

    34. [34]

      Yuan, F.; Li, S.; Fan, Z.; Meng, X.; Fan, L.; Yang, S. Nano Today 2016, 11(5), 565. doi: 10.1016/j.nantod.2016.08.006  doi: 10.1016/j.nantod.2016.08.006

    35. [35]

      Lu, J.; Yang, J.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. ACS Nano 2009, 3(8), 2367. doi: 10.1021/nn900546b  doi: 10.1021/nn900546b

    36. [36]

      Tan, X.; Li, Y.; Li, X.; Zhou, S.; Fan, L.; Yang, S. Chem. Commun. 2015, 51(13), 2544. doi: 10.1039/C4CC09332A  doi: 10.1039/C4CC09332A

    37. [37]

      Zhang, M.; Bai, L.; Shang, W.; Xie, W.; Ma, H.; Fu, Y.; Fang, D.; Sun, H.; Fan, L.; Han, M. J. Mater. Chem. 2012, 22(15), 7461. doi: 10.1039/C2JM16835A  doi: 10.1039/C2JM16835A

    38. [38]

      Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Chem. Commum. 2008, (41), 5116. doi: 10.1039/B812420E  doi: 10.1039/B812420E

    39. [39]

      Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2015, 54(18), 5360. doi: 10.1002/anie.201501193  doi: 10.1002/anie.201501193

    40. [40]

      Pan, D.; Zhang, J.; Li, Z.; Wu, C.; Yan, X.; Wu, M. Chem. Commum. 2010, 46(21), 3681. doi: 10.1039/C000114G  doi: 10.1039/C000114G

    41. [41]

      Xiu, Y.; Gao, Q.; Li, G. D.; Wang, K. X.; Chen, J. S. Inorg. Chem. 2010, 49(13), 5859. doi: 10.1021/ic1000039  doi: 10.1021/ic1000039

    42. [42]

      Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Adv. Mater. 2010, 22(4), 505. doi: 10.1002/adma.200901996  doi: 10.1002/adma.200901996

    43. [43]

      Zhu, H.; Yang, X. Chem. Commum. 2009, 5118. doi: 10.1039/B907612C  doi: 10.1039/B907612C

    44. [44]

      Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. Adv. Mater. 2017, 29(37), 1702910. doi: 10.1002/adma.201702910  doi: 10.1002/adma.201702910

    45. [45]

      Liu, R.; Wu. D., Feng. X.; Mullen. K..J. Am. Chem. Soc. 2011, 133(39). doi: 10.1021/ja204953k  doi: 10.1021/ja204953k

    46. [46]

      Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. J. Mater. Chem. C 2014, 2(34), 6954. doi: 10.1039/C4TC01191K  doi: 10.1039/C4TC01191K

    47. [47]

      Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Chem. Commum. 2011, 47(9), 2580. doi: 10.1039/C0CC04812G  doi: 10.1039/C0CC04812G

    48. [48]

      Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Adv. Mater. 2015, 27(10), 1663. doi: 10.1002/adma.201405070  doi: 10.1002/adma.201405070

    49. [49]

      Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Adv. Mater. 2011, 23(48), 5801. doi: 10.1002/adma.201102866  doi: 10.1002/adma.201102866

    50. [50]

      Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S. Angew. Chem. -Int. Ed. 2012, 51(27), 6662. doi: 10.1002/anie.201200474  doi: 10.1002/anie.201200474

    51. [51]

      Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Angew. Chem. -Int. Ed. 2015, 54(10), 2970. doi: 10.1002/anie.201411004  doi: 10.1002/anie.201411004

    52. [52]

      Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem. 2010, 2(12), 1015. doi: 10.1038/nchem.907  doi: 10.1038/nchem.907

    53. [53]

      Wang, X.; Cao, L.; Yang, S. T.; Lu, F.; Meziani, M. J.; Tian, L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Angew. Chem. -Int. Ed. 2010, 122(31), 5438. doi: 10.1002/ange.201000982  doi: 10.1002/ange.201000982

    54. [54]

      Fan, Z.; Li, Y.; Li, X.; Fan, L.; Zhou, S.; Fang, D.; Yang, S. Carbon 2014, 70(4), 149. doi: 10.1016/j.carbon.2013.12.085  doi: 10.1016/j.carbon.2013.12.085

    55. [55]

      Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J. R. Nano Lett. 2013, 13(6), 2436. doi: 10.1021/nl400368v  doi: 10.1021/nl400368v

    56. [56]

      Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W. Adv. Funct. Mater. 2012, 22(22), 4732. doi: 10.1002/adfm.201201499  doi: 10.1002/adfm.201201499

    57. [57]

      Zong, J.; Zhu, Y.; Yang, X.; Shen, J.; Li, C. Chem. Commum. 2011, 47(2), 764. doi: 10.1039/C0CC03092A  doi: 10.1039/C0CC03092A

    58. [58]

      Lee, C.; Lim, J.; Wan, K. B. Nano Lett. 2012, 12(5), 2362. doi: 10.1364/SOLED.2013.DM4E.2  doi: 10.1364/SOLED.2013.DM4E.2

    59. [59]

      Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Nat. Photon. 2007, 1(12), 717. doi: 10.1038/nphoton.2007.226  doi: 10.1038/nphoton.2007.226

    60. [60]

      Feng, X. T.; Zhang, F.; Wang, Y. L.; Zhang, Y.; Yang, Y. Z.; Liu, X. G. Appl. Phys. Lett. 2015, 107(21), 3076. doi: 10.1063/1.4936234  doi: 10.1063/1.4936234

    61. [61]

      Mao, L. H.; Tang, W. Q.; Deng, Z. Y.; Liu, S. S.; Wang, C. F.; Chen, S. Ind. Eng. Chem. Res. 2014, 53(15), 6417. doi: 10.1021/ie500602n  doi: 10.1021/ie500602n

    62. [62]

      Chen, L.; Wei, J.; Zhang, C.; Du, Z.; Li, H.; Zou, W. RSC. Adv. 2014, 4(93), 51084. doi: 10.1039/C4RA07292H  doi: 10.1039/C4RA07292H

    63. [63]

      Sarswat, P. K.; Free, M. L. Phys. Chem. Chem. Phys. 2015, 17(41), 27642. doi: 10.1039/C5CP04782J  doi: 10.1039/C5CP04782J

    64. [64]

      Zhang, W.; Yu, S. F.; Fei, L.; Jin, L.; Pan, S.; Lin, P. Carbon 2015, 85, 344. doi: 10.1016/j.carbon.2014.12.107  doi: 10.1016/j.carbon.2014.12.107

    65. [65]

      Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C. P.; Hao, J.; Lin, J.; Jiang, H.; Teng, K. S.; Yang, Z. ACS Nano 2014, 8(6), 6312. doi: 10.1021/nn501796r  doi: 10.1021/nn501796r

    66. [66]

      Chen, Q. L.; Tang, W. Q.; Wang, C. F.; Chen, S. Appl. Phys. A 2014, 117(3), 1583. doi: 10.1007/s0033  doi: 10.1007/s0033

    67. [67]

      Sun, C.; Zhang, Y.; Wang, Y.; Liu, W.; Kalytchuk, S.; Kershaw, S. V.; Zhang, T.; Zhang, X.; Zhao, J.; Yu, W. W. Appl. Phys. Lett. 2014, 104(26), 1577. doi: 10.1063/1.4886415  doi: 10.1063/1.4886415

    68. [68]

      Sun, C.; Zhang, Y.; Sun, K.; Reckmeier, C.; Zhang, T.; Zhang, X.; Zhao, J.; Wu, C.; Yu, W. W.; Rogach, A. L. Nanoscale 2015, 7(28), 12045. doi: 10.1039/C5NR03014E  doi: 10.1039/C5NR03014E

    69. [69]

      Chen, Y.; Zheng, M.; Xiao, Y.; Dong, H.; Zhang, H.; Zhuang, J.; Hu, H.; Lei, B.; Liu, Y. Adv. Mater. 2016, 28(2), 312. doi: 10.1002/adma.201503380  doi: 10.1002/adma.201503380

    70. [70]

      He, J.; He, Y.; Chen, Y.; Lei, B.; Zhuang, J.; Xiao, Y.; Liang, Y.; Zheng, M.; Zhang, H.; Liu, Y.Small 2017, 13(26). doi: 10.1002/smll.201700075  doi: 10.1002/smll.201700075

    71. [71]

      Hu, S.; Ding, Y.; Chang, Q.; Trinchi, A.; Lin, K.; Yang, J.; Liu, J. Nanoscale 2015, 7(10), 4372. doi: 10.1039/C4NR07119K  doi: 10.1039/C4NR07119K

    72. [72]

      Shen, C.; Wang, J.; Cao, Y.; Lu, Y. J. Mater. Chem. C 2015, 3(26), 6668. doi: 10.1039/C5TC01156F  doi: 10.1039/C5TC01156F

    73. [73]

      Zheng, J.; Wang, Y.; Zhang, F.; Yang, Y.; Liu, X.; Guo, K.; Wang, H.; Xu, B. J. Mater. Chem. C 2017, 5(32), 8105. doi: 10.1039/C7TC01701D  doi: 10.1039/C7TC01701D

    74. [74]

      Zhang, X.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y.; Wang, P.; Zhang, T.; Zhao, Y.; Zhang, H. ACS Nano 2013, 7(12), 11234. doi: 10.1021/nn405017q  doi: 10.1021/nn405017q

    75. [75]

      Kyu, K. J.; Bae, S.; Yi, Y.; Jin, P. M.; Jin, K. S.; Myoung, N.; Lee, C. L.; Hee, H. B.; Hyeok, P. J. Sci.Rep. 2015, 5, 11032. doi: 10.1038/srep11032  doi: 10.1038/srep11032

    76. [76]

      Huang, J. J.; Zhong, Z. F.; Rong, M. Z.; Zhou, X.; Chen, X. D.; Zhang, M. Q. Carbon 2014, 70(2), 190. doi: 10.1016/j.carbon.2013.12.092  doi: 10.1016/j.carbon.2013.12.092

    77. [77]

      Wu, F.; Cui, Q.; Qiu, Z.; Liu, C.; Zhang, H.; Shen, W.; Wang, M. ACS Appl. Mater. Interfaces 2013, 5(8), 3246. doi: 10.1021/am400281s  doi: 10.1021/am400281s

    78. [78]

      Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L.J. Am. Chem. Soc. 2014, 136(10), 3760. doi: 10.1021/ja4132246  doi: 10.1021/ja4132246

    79. [79]

      Zhang. R. J.; Zhao. Min, ; Wang. Z. Q.; Wang. Z. T, Zhao. Bo.; Miao. Y. Q.; Zhou. Y. J.; Wang. H.; Hao. Y. Y.; Chen. G.; Zhu. F. R. ACS Appl. Mater. Interfaces 2018, 10(5), 4895. doi: 10.1021/acsami.7b17969  doi: 10.1021/acsami.7b17969

    80. [80]

      Chang, O. K.; Hwang, S. W.; Kim, S.; Dong, H. S.; Kang, S. S.; Kim, J. M.; Chan, W. J.; Ju, H. K.; Lee, K. W.; Choi, S. H. Sci. Rep. 2014, 4, 5603. doi: 10.1038/srep05603  doi: 10.1038/srep05603

  • 加载中
    1. [1]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    5. [5]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    9. [9]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

Metrics
  • PDF Downloads(8)
  • Abstract views(1619)
  • HTML views(381)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return