Citation: LUO Pan, SUN Fang, DENG Ju, XU Haitao, ZHANG Huijuan, WANG Yu. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1397-1404. doi: 10.3866/PKU.WHXB201804022 shu

Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction

  • Corresponding author: ZHANG Huijuan, zhanghj@cqu.edu.cn WANG Yu, wangy@cqu.edu.cn
  • Received Date: 8 March 2018
    Revised Date: 27 March 2018
    Accepted Date: 29 March 2018
    Available Online: 2 December 2018

    Fund Project: the National Natural Science Foundation of China 21373280The project was supported by the Fundamental Research Funds for the Central Universities, China (0301005202017), the Thousand Young Talents Program of the Chinese Central Government (0220002102003), the National Natural Science Foundation of China (21373280, 21403019), the Beijing National Laboratory for Molecular Sciences, China, the Hundred Talents Program at Chongqing University, China (0903005203205), and the State Key Laboratory of Mechanical Transmissions Project, China (SKLMT-ZZKT-2017M11)the Fundamental Research Funds for the Central Universities, China 0301005202017the State Key Laboratory of Mechanical Transmissions Project, China SKLMT-ZZKT-2017M11the Thousand Young Talents Program of the Chinese Central Government 0220002102003the Hundred Talents Program at Chongqing University, China 0903005203205the National Natural Science Foundation of China 21403019

  • In the past decade, fossil fuel resources have been exploited and utilized extensively, which could lead to increasing environmental crises, like greenhouse effect, water pollution, etc. Accordingly, many coping strategies have been put forward, such as water electrolysis, metal-air batteries, fuel cell, etc. Among the strategies mentioned above, water electrolysis is one of the most promising. Water splitting, which can achieve sustainable hydrogen production, is a favorable strategy due to the abundance of water resources. Splitting of water includes two half reactions integral to its operation: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, its practical application is mainly impeded by the sluggish anode reaction. Simultaneously, noble metal oxides (IrO2 and RuO2) and Pt-based catalysts have been recognized as typical OER catalysts; however, the scarcity of noble metals greatly limits their development. Hence, designing an alternative electrocatalyst plays a vital role in the development of OER. However, exploring a highly active electrocatalyst for OER is still difficult. Herein, a miraculous construction of a tree-like array of NiS/Ni3S2 heterostructure, which is directly grown on Ni foam substrate, is synthesized via one-step hydrothermal process. Since NiS and Ni3S2 have shown great OER performance in previous investigations, this novel NiS-Ni3S2/Nikel foam (NF) heterostructure array has tremendous potential as a practical OER catalyst. Upon application in OER, the NiS-Ni3S2/NF heterostructure array catalyst exhibits excellent activity and stability. More specifically, this novel tree-like NiS-Ni3S2 heterostructure array shows extremely low overpotential (269 mV to achieve a current density of 10 mA·cm-2) and small Tafel slope for OER. It also shows extraordinary stability in alkaline electrolytes. Compared with the Ni3S2 nanorods array, the NiS-Ni3S2 heterostructure array has a synergistic effect that can improve the OER performance. Due to the secondary structure (Ni3S2 nanosheets), the tree-like NiS-Ni3S2 array provides more active sites could have higher specific surface area. The greater activity of the NiS/Ni3S2 heterostructure may also stem from the tight conjunction between tree-like NiS/Ni3S2 and the Ni foam substrate, which is beneficial for electronic transmission. Hydroxy groups can accumulate in large amounts on the surface of the tree-like array, and it also generates some Ni-based oxides that are favorable to OER. Moreover, the synergistic effect of such heterostructure can intrinsically improve the OER activity. The unique tree-like NiS-Ni3S2 heterostructure array has great potential as an alternative OER electrocatalyst.
  • 加载中
    1. [1]

      Wang, F.; Shifa, T. A.; Zhan, X.; Huang, Y.; Liu, K.; Cheng, Z.; Jiang, C.; He, J. Nanoscale 2015, 7 (47), 19764. doi: 10.1039/c5nr06718a  doi: 10.1039/c5nr06718a

    2. [2]

      Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. J. Mater. Chem. A 2016, 4 (45), 17587. doi: 10.1039/c6ta08075h  doi: 10.1039/c6ta08075h

    3. [3]

      Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Chem. Soc. Rev. 2013, 42 (7), 2986. doi: 10.1039/C2CS35310e  doi: 10.1039/C2CS35310e

    4. [4]

      Zhou, W.; Wu, X. J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Energy Environ. Sci. 2013, 6 (10), 2921. doi: 10.1039/c3ee41572d  doi: 10.1039/c3ee41572d

    5. [5]

      Dou, Y. H.; Liao, T.; Ma, Z. Q.; Tian, D. L.; Liu, Q. N.; Xiao, F.; Sun, Z. Q.; Kim, J. H.; Dou, S. X. Nano Energy 2016, 30, 267. doi: 10.1016/j.nanoen.2016.10.020  doi: 10.1016/j.nanoen.2016.10.020

    6. [6]

      Jin, C.; Lu, F. L.; Cao, X. C.; Yang, Z. R.; Yang, R. Z. J. Mater. Chem. A 2013, 1 (39), 12170. doi: 10.1039/c3ta12118f  doi: 10.1039/c3ta12118f

    7. [7]

      Cheng, N.; Liu, Q.; Tian, J.; Sun, X.; He, Y.; Zhai, S.; Asiri, A. M. Int. J. Hydrog. Energy 2015, 40 (32), 9866. doi: 10.1016/j.ijhydene.2015.06.105  doi: 10.1016/j.ijhydene.2015.06.105

    8. [8]

      Dong, B.; Zhao, X.; Han, G. Q.; Li, X.; Shang, X.; Liu, Y. R.; Hu, W. H.; Chai, Y. M.; Zhao, H.; Liu, C. G. J. Mater. Chem. A 2016, 4 (35), 13499. doi: : 10.1039/c6ta03177c  doi: 10.1039/C6TA03177C

    9. [9]

      Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Nano Lett. 2015, 15 (2), 1421. doi: 10.1021/nl504872s  doi: 10.1021/nl504872s

    10. [10]

      Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. ACS Nano 2014, 8 (4), 3970. doi: 10.1021/nn500880v  doi: 10.1021/nn500880v

    11. [11]

      Swesi, A. T.; Masud, J.; Nath, M. Energy Environ. Sci. 2016, 9 (5), 1771. doi: 10.1039/c5ee02463c  doi: 10.1039/c5ee02463c

    12. [12]

      Chen, J. S.; Ren, J.; Shalom, M.; Fellinger, T.; Antonietti, M. ACS Appl. Mater. Interfaces 2016, 8 (8), 5509. doi: 10.1021/acsami.5b10099  doi: 10.1021/acsami.5b10099

    13. [13]

      Chen, P. Z.; Xu, K.; Tong, Y.; Li, X. L.; Tao, S.; Fang, Z. W.; Chu, W. S.; Wu, X. J.; Wu, C. Z. Inorg. Chem. Front. 2016, 3 (2), 236. doi: 10.1039/C5QI00197H  doi: 10.1039/C5QI00197H

    14. [14]

      Yang, L.; Gao, M. G.; Dai, B.; Guo, X. H.; Liu, Z. Y.; Peng, B. H. Electrochim. Acta 2016, 191, 813. doi: 10.1016/j.electacta.2016.01.160  doi: 10.1016/j.electacta.2016.01.160

    15. [15]

      Li, T. T.; Zuo, Y. P.; Lei, X. M.; Li, N.; Liu, J. W.; Han, H. Y. J. Mater. Chem. A 2016, 4 (21), 8029. doi: 10.1039/C6TA01547F  doi: 10.1039/C6TA01547F

    16. [16]

      Zhang, Z.; Zhao, H.; Xia, Q.; Allen, J.; Zeng, Z.; Gao, C.; Li, Z.; Du, X.; Świerczek, K. Electrochim. Acta 2016, 211, 761. doi: 10.1016/j.electacta.2016.06.103  doi: 10.1016/j.electacta.2016.06.103

    17. [17]

      Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137 (44), 14023. doi: 10.1021/jacs.5b08186  doi: 10.1021/jacs.5b08186

    18. [18]

      Zhou, X.; Liu, Y.; Ju, H.; Pan, B.; Zhu, J.; Ding, T.; Wang, C.; Yang, Q. Chem. Mater. 2016, 28 (6), 1838. doi: 10.1021/acs.chemmater.5b05006  doi: 10.1021/acs.chemmater.5b05006

    19. [19]

      Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Angew. Chem. Int. Ed. 2016, 55 (23), 6702. doi: 10.1002/anie.201602237  doi: 10.1002/anie.201602237

    20. [20]

      Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L.; et al. Nat. Nanotechnol. 2014, 9 (12), 1024. doi: 10.1038/nnano.2014.222  doi: 10.1038/nnano.2014.222

    21. [21]

      Lee, D. K.; Ahn, C. W.; Jeon, H. J. Microelectron. Eng. 2016, 166, 1. doi: 10.1016/j.mee.2016.09.003  doi: 10.1016/j.mee.2016.09.003

    22. [22]

      Zhao, Y.; Zhang, Y.; Zhao, H.; Li, X.; Li, Y.; Wen, L.; Yan, Z.; Huo, Z. Nano Res. 2015, 8 (8), 2763. doi: 10.1007/s12274-015-0783-1  doi: 10.1007/s12274-015-0783-1

    23. [23]

      Jeong, Y. U.; Manthiram, A. Inorg. Chem. 2001, 40 (1), 73. doi: 10.1021/ic000819d  doi: 10.1021/ic000819d

    24. [24]

      Huang, S.; Harris, K. D.; Lopez-Capel, E.; Manning, D. A.; Rickard, D. Inorg. Chem. 2009, 48 (24), 11486. doi: 10.1021/ic901512z  doi: 10.1021/ic901512z

    25. [25]

      Zheng, J.; Zhou, W.; Liu, T.; Liu, S.; Wang, C.; Guo, L. Nanoscale 2017, 9 (13), 4409. doi: 10.1039/c6nr07953a  doi: 10.1039/c6nr07953a

    26. [26]

      Xu, K.; Chen, P.; Li, X.; Tong, Y.; Ding, H.; Wu, X.; Chu, W.; Peng, Z.; Wu, C.; Xie, Y. J. Am. Chem. Soc. 2015, 137 (12), 4119. doi: 10.1021/ja5119495  doi: 10.1021/ja5119495

    27. [27]

      Zhu, T.; Zhu, L. L.; Wang, J.; Ho, G. W. J. Mater. Chem. A 2016, 4 (36), 13916. doi: 10.1039/c6ta05618k  doi: 10.1039/c6ta05618k

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    7. [7]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    10. [10]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    11. [11]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    12. [12]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    13. [13]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    14. [14]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    15. [15]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    18. [18]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(7)
  • Abstract views(620)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return