Citation: HE Chang, HOU Jianhui. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1202-1210. doi: 10.3866/PKU.WHXB201803271 shu

Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors

  • Corresponding author: HE Chang, hechang@iccas.ac.cn HOU Jianhui, hjhzlz@iccas.ac.cn
  • Received Date: 26 February 2018
    Revised Date: 20 March 2018
    Accepted Date: 21 March 2018
    Available Online: 27 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (521734008)the National Natural Science Foundation of China 521734008

  • Solution-processed bulk-heterojunction organic solar cells (BHJ-OSCs), with their advantages of light weight, low cost, and easy fabrication, are a photovoltaic technology with practical potentials. In BHJ-OSCs, the exciton dissociation and charge transport are highly sensitive to the molecular packing pattern and phase separation morphology in the active layer. On the other hand, when using photovoltaic small molecules (SMs), the purity can be controlled due to their well-defined chemical structure, and therefore there is better reproducibility in device performance. Especially, the non-fullerene acceptors are easier to tune in their light absorption and energy level. Hence, there has been considerable interest in small non-fullerene SM organic solar cells (NF-SM-OSCs). Although these cells have the dual advantages of non-fullerene acceptor materials and SMs, the fabrication of high-efficiency cells still possess great challenges. For example, efficient photovoltaic SMs typically possess an acceptor-donor-acceptor (A-D-A) structure that causes intrinsic anisotropy, making it more complicated to modulate and control the morphology of the nanoscale active layer. In this article, we will summarize recent advances in high-performance NF-SM-OSCs, and present an introduction of the specific requirements for SM donors in the small NF-SM-OSCs. We first summarize our works on SM donors with the A-D-A structure. The trialkylthienyl-substituted benzodithiophene (TriBDT-T) unit is employed as the D-core unit, and the A end groups include rhodanine (RN), cyano-rhodanine (RCN), and 1, 3-indanone (IDO). The band gap (Eg) of these compounds is about 2.0 eV, with the low-lying highest occupied molecular orbital (HOMO) level of -5.51 eV. First, NF-SM-OSCs with DRTB-T and a non-fullerene acceptor (IDIC) were constructed. The morphology of the active layer was fine-tuned by solvent vapor annealing (SVA), leading to the formation of the desired interconnected nanoscale structure. Our results demonstrate that the molecular design of a wide band gap (WBG) donor to create a well-matched donor-acceptor pair with a low band gap (LBG) non-fullerene SM acceptor, as well as subtle morphological control, provides great potential to realize high-performance NFSM-OSCs. We also studied the molecular orientation optimization from the aspect of molecular design. We designed and synthesized a group of SM compounds having identical π-conjugated backbones and end groups with different alkyl chain lengths. Since these compounds have identical photoelectric properties, they allow us to focus on the significant influence of the end alkyl chains on the molecular orientation and intermolecular aggregation behavior in solid-state films. Characterization of the DRTB-T-CX films using 2D grazing incidence wide-angle X-ray scattering (GIWAXS) revealed an obvious transition of orientation from edge-on to face-on relative to the substrate when the end alkyl chain is lengthened. This demonstrates that the length of the end alkyl chain can be used to modify the molecular orientation. A DRTB-T-C4/IT-4F-based device achieved a maximum power conversion efficiency (PCE) of up to 11.24%, which is the best performance reported for state-of-the-art NF-SM-OSCs. On this basis, the challenges and prospects of NF-SM-OSCs are discussed.
  • 加载中
    1. [1]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. doi: 10.1038/nmat1500  doi: 10.1038/nmat1500

    3. [3]

      Chen, J.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709. doi: 10.1021/ar900061z  doi: 10.1021/ar900061z

    4. [4]

      Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z  doi: 10.1021/cr050149z

    5. [5]

      Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S. J.; Williams, S. P. Adv. Mater. 2010, 22, 3839. doi: 10.1002/adma.200903697  doi: 10.1002/adma.200903697

    6. [6]

      Zhao, Y.; Zou, W.; Li, H.; Lu, K.; Yan, W.; Wei, Z. Chin. J. Polym. Sci. 2017, 35, 261. doi: 10.1007/s10118-017-1875-z  doi: 10.1007/s10118-017-1875-z

    7. [7]

      Heo, Y. J.; Jung, Y. S.; Hwang, K.; Kim, J. E.; Yeo, J. S.; Lee, S.; Jeon, Y. J.; Lee, D.; Kim, D. Y. ACS Appl. Mater. Interfaces 2017, 9, 39519. doi: 10.1021/acsami.7b12420  doi: 10.1021/acsami.7b12420

    8. [8]

      Huang, Y. C.; Cha, H. C.; Chen, C. Y.; Tsao, C. S. Prog. Photovoltaics 2017, 25, 928. doi: 10.1002/pip.2907  doi: 10.1002/pip.2907

    9. [9]

      Krebs, F. C.; Norrman, K. ACS Appl. Mater. Interfaces 2010, 2, 877. doi: 10.1021/am900858x  doi: 10.1021/am900858x

    10. [10]

      Mishra, A.; Bauerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020. doi: 10.1002/anie.201102326  doi: 10.1002/anie.201102326

    11. [11]

      Chen, Y.; Wan, X.; Long, G. Acc. Chem. Res. 2013, 46, 2645. doi: 10.1021/ar400088c  doi: 10.1021/ar400088c

    12. [12]

      Collins, S. D.; Ran, N. A.; Heiber, M. C.; Nguyen, T. Q. Adv. Energy Mater. 2017, 7, 1602242. doi: 10.1002/aenm.201602242  doi: 10.1002/aenm.201602242

    13. [13]

      Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; et al. Nat. Commun. 2016, 7, 13740. doi: 10.1038/ncomms13740  doi: 10.1038/ncomms13740

    14. [14]

      Wan, J.; Xu, X.; Zhang, G.; Li, Y.; Feng, K.; Peng, Q. Energy Environ. Sci. 2017, 10, 1739. doi: 10.1039/c7ee00805h  doi: 10.1039/c7ee00805h

    15. [15]

      Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/c2cs15313k  doi: 10.1039/c2cs15313k

    16. [16]

      Cheacharoen, R.; Mateker, W. R.; Zhang, Q.; Kan, B.; Sarkisian, D.; Liu, X.; Love, J. A.; Wan, X.; Chen, Y.; Nguyen, T. Q.; et al. Sol. Energy Mater. Sol. Cells 2017, 161, 368. doi: 10.1016/j.solmat.2016.12.021  doi: 10.1016/j.solmat.2016.12.021

    17. [17]

      Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; McCulloch, I. Acc. Chem. Res. 2015, 48, 2803. doi: 10.1021/acs.accounts.5b00199  doi: 10.1021/acs.accounts.5b00199

    18. [18]

      Liu, Y.; Mu, C.; Jiang, K.; Zhao, J.; Li, Y.; Zhang, L.; Li, Z.; Lai, J. Y. L.; Hu, H.; Ma, T.; et al. Adv. Mater. 2015, 27, 1015. doi: 10.1002/adma.201404152  doi: 10.1002/adma.201404152

    19. [19]

      Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T.; Wan, J.; Lu, X.; Li, C.; Chen, H. Energy Environ. Sci. 2016, 9, 604. doi: 10.1039/c5ee03481g  doi: 10.1039/c5ee03481g

    20. [20]

      Lin, Y.; Zhan, X. Mater. Horiz. 2014, 1, 470. doi: 10.1039/c4mh00042k  doi: 10.1039/c4mh00042k

    21. [21]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    22. [22]

      Sension, R. J.; Szarka, A. Z.; Smith, G. R.; Hochstrasser, R. M. Chem. Phys. Lett. 1991, 185, 179. doi: 10.1016/S0009-2614(91)85043-V  doi: 10.1016/S0009-2614(91)85043-V

    23. [23]

      Sariciftci, N. S.; Heeger, A. J. Int. J. Mod. Phys. B 1994, 8, 237. doi: 10.1142/S0217979294000105  doi: 10.1142/S0217979294000105

    24. [24]

      Kraabel, B.; Lee, C. H.; McBranch, D.; Moses, D.; Sariciftci, N. S.; Heeger, A. J. Chem. Phys. Lett. 2013, 589, 63. doi: 10.1016/j.cplett.2013.08.069  doi: 10.1016/j.cplett.2013.08.069

    25. [25]

      Kang, H.; Kim, K. H.; Choi, J.; Lee, C.; Kim, B. J. ACS Macro Lett. 2014, 3, 1009. doi: 10.1021/mz500415a  doi: 10.1021/mz500415a

    26. [26]

      Zhan, C.; Yao, J. Chem. Mater. 2016, 28, 1948. doi: 10.1021/acs.chemmater.5b04339  doi: 10.1021/acs.chemmater.5b04339

    27. [27]

      Zhang, R.; Yang, H.; Zhou, K.; Zhang, J.; Yu, X.; Liu, J.; Han, Y. Macromolecules 2016, 49, 6987. doi: 10.1021/acs.macromol.6b01526  doi: 10.1021/acs.macromol.6b01526

    28. [28]

      Jiang, W.; Li, Y.; Wang, Z. Acc. Chem. Res. 2014, 47, 3135. doi: 10.1021/ar500240e  doi: 10.1021/ar500240e

    29. [29]

      Jiang, W.; Li, Y.; Wang, Z. Chem. Soc. Rev. 2013, 42, 6113. doi: 10.1039/c3cs60108k  doi: 10.1039/c3cs60108k

    30. [30]

      Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2013, 25, 4403. doi: 10.1002/adma.201301167  doi: 10.1002/adma.201301167

    31. [31]

      Chen, Y.; Zhang, X.; Zhan, C.; Yao, J. ACS Appl. Mater. Interfaces 2015, 7, 6462. doi: 10.1021/am507581w  doi: 10.1021/am507581w

    32. [32]

      Huang, J.; Wang, X.; Zhang, X.; Niu, Z.; Lu, Z.; Jiang, B.; Sun, Y.; Zhan, C.; Yao, J. ACS Appl. Mater. Interfaces 2014, 6, 3853. doi: 10.1021/am406050j  doi: 10.1021/am406050j

    33. [33]

      Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156. doi: 10.1021/jacs.5b06414  doi: 10.1021/jacs.5b06414

    34. [34]

      Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; et al. J. Am. Chem. Soc. 2016, 138, 375. doi: 10.1021/jacs.5b11149  doi: 10.1021/jacs.5b11149

    35. [35]

      Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; et al. J. Am. Chem. Soc. 2016, 138, 10184. doi: 10.1021/jacs.6b04368  doi: 10.1021/jacs.6b04368

    36. [36]

      Feng, G.; Xu, Y.; Zhang, J.; Wang, Z.; Zhou, Y.; Li, Y.; Wei, Z.; Li, C.; Li, W. J. Mater. Chem. A 2016, 4, 6056-6063. doi: 10.1039/c5ta10430k  doi: 10.1039/c5ta10430k

    37. [37]

      Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; et al. J. Am. Chem. Soc. 2013, 135, 8484. doi: 10.1021/ja403318y  doi: 10.1021/ja403318y

    38. [38]

      Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; et al. J. Am. Chem. Soc. 2015, 137, 3886. doi: 10.1021/jacs.5b00305  doi: 10.1021/jacs.5b00305

    39. [39]

      Xin, R.; Feng, J.; Zeng, C.; Jiang, W.; Zhang, L.; Meng, D.; Ren, Z.; Wang, Z.; Yan, S. ACS Appl. Mater. Interfaces 2017, 9, 2739. doi: 10.1021/acsami.6b13721  doi: 10.1021/acsami.6b13721

    40. [40]

      Liang, N.; Meng, D.; Ma, Z.; Kan, B.; Meng, X.; Zheng, Z.; Jiang, W.; Li, Y.; Wan, X.; Hou, J.; et al. Adv. Energy Mater. 2017, 7, 1601664. doi: 10.1002/aenm.201601664  doi: 10.1002/aenm.201601664

    41. [41]

      Lin, Y.; Wang, J.; Dai, S.; Li, Y.; Zhu, D.; Zhan, X. Adv. Energy Mater. 2014, 4, 1400420. doi: 10.1002/aenm.201400420  doi: 10.1002/aenm.201400420

    42. [42]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; et al. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155  doi: 10.1002/adma.201604155

    43. [43]

      Bin, H.; Yang, Y.; Zhang, Z.; Ye, L.; Ghasem, M.; Chen, S.; Zhang, Y.; Zhang, C.; Sun, C.; Xue, L.; et al. J. Am. Chem. Soc. 2017, 139, 5085. doi: 10.1021/jacs.6b12826  doi: 10.1021/jacs.6b12826

    44. [44]

      Qiu, B.; Xue, L.; Yang, Y.; Bin, H.; Zhang, Y.; Zhang, C.; Xiao, M.; Park, K.; Morrison, W.; Zhang, Z.; et al. Chem. Mater. 2017, 29, 7543. doi: 10.1021/acs.chemmater.7b02536  doi: 10.1021/acs.chemmater.7b02536

    45. [45]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    46. [46]

      Li, H.; Zhao, Y.; Fang, J.; Zhu, X.; Xia, B.; Lu, K.; Wang, Z.; Zhang, J.; Guo, X.; Wei, Z. Adv. Energy Mater. 2018, 1702377. doi: 10.1002/aenm.201702377  doi: 10.1002/aenm.201702377

    47. [47]

      Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yao, H.; Yang, Y.; Zhang, Y.; Zhao, W.; Hou, J. J. Am. Chem. Soc. 2017, 139, 1958. doi: 10.1021/jacs.6b11612  doi: 10.1021/jacs.6b11612

    48. [48]

      Jia, G.; Zhang, S.; Yang, L.; He, C.; Fan, H.; Hou, J. Acta Phys. -Chim. Sin. 2018, in press.  doi: 10.3866/PKU.WHXB201712063

    49. [49]

      Zhang, S.; Yang, L.; Liu, D.; He, C.; Zhang, J.; Zhang, Y.; Hou, J. Sci. China Chem. 2017, 60, 1340. doi: 10.1007/s11426-017-9121-0  doi: 10.1007/s11426-017-9121-0

    50. [50]

      Badgujar, S.; Song, C. E.; Oh, S.; Shin, W. S.; Moon, S. J.; Lee, J. C.; Jung, I. H.; Lee, S. K. Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor. J. Mater. Chem. A 2016, 4, 16335. doi: 10.1039/c6ta06367e  doi: 10.1039/c6ta06367e

    51. [51]

      Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yang, Y.; Zhu, J.; Cui, Y.; Zhao, W.; Zhang, H.; Zhang, Y.; et al. Chem. Mater. 2018, 30, 2129. doi: 10.1021/acs.chemmater.8b00287  doi: 10.1021/acs.chemmater.8b00287

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(11)
  • Abstract views(848)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return